Как объединить два уравнения прямых в одной

Линейная функция — определение и вычисление с примерами решения

Содержание:

Рассмотрим уравнение с двумя неизвестными

где и —заданные числа. Этому уравнению удовлетворяет бесконечное множество пар чисел и .

удовлетворяют следующие пары:

Для того чтобы найти пару чисел, удовлетворяющих уравнению , нужно придать произвольное числовое значение и подставить в уравнение , тогда получит определенное числовое значение. Например, если . Очевидно, что пара чисел и удовлетворяет уравнению. Так же и в случае уравнения (1) можно придать произвольное числовое значение и получить для соответствующее числовое значение.

Так как в данном уравнении может принимать любое числовое значение, то его называют переменной величиной. Поскольку выбор этого числового значения ничем не ограничен, то называют независимой переменной величиной или аргументом.

Для получаются также различные значения, но уже в зависимости от выбранного значения ; поэтому называют зависимым переменным или функцией.

Функцию , определяемую уравнением (1), называют линейной функцией.

Пример:

Вычислить значения линейной функции, определяемой уравнением , при следующих значениях независимого переменного: .

Решение:

Если ; если ; если .

Покажем, что если принять пару чисел и , удовлетворяющих уравнению (1), за абсциссу и ординату точки, то геометрическим местом этих точек будет прямая линия (рис. 14).

В самом деле, рассмотрим точку и точки и , координаты которых удовлетворяют уравнению (1), т. е. . Обозначим проекции точек , и на ось через , и , тогда , Проведем из точки прямую, параллельную оси . При этом получим

Предположим, что точки и , не лежат на родной прямой. Соединяя точку с точками , и , получим два прямоугольных треугольника и , из которых имеем:

Но так как и удовлетворяют уравнению (1), то

Выражения и являются отношениями противоположных катетов к прилежащим для углов и . Следовательно, и — а поэтому и так как углы острые. Это значит, что точки и лежат на одной прямой. Но мы предположили, что эти точки не лежат на одной прямой. Таким образом, мы пришли к противоречию, а это и доказывает, что точки и лежат на одной прямой. Обозначим угол через . Этот угол образован прямой с положительным направлением оси .

Так как и — произвольные точки, координаты которых удовлетворяют уравнению (1), то можно сделать следующее заключение: любая точка, координаты которой удовлетворяют уравнению (1), лежит на прямой, отсекающей на оси отрезок и образующей с положительным направлением оси угол такой, что .

Число называется начальной ординатой, число — угловым коэффициентом прямой.

Предыдущие рассуждения позволяют сделать вывод: линейная функция определяет на плоскости прямую, у которой начальная ордината равна , а угловой коэффициент .

Например, линейная функция определяет на координатной плоскости прямую, отсекающую на оси отрезок —4 и наклоненную к оси под углом в 60°, так как .

Если имеем определенную прямую, отсекающую на оси отрезок и наклоненную к оси под углом тангенс которого равен , то, взяв произвольную абсциссу, найдем на указанной прямой только одну точку, имеющую эту абсциссу, т. е. по заданному найдется только одна точка, а следовательно, и одно значение .

Очевидно, имеет место и такое предложение: Всякой прямой, отсекающей на оси отрезок и наклоненной к оси под углом, тангенс которого равен числу , соответствует линейная функция .

Координаты любой, точки, лежащей на указанной прямой, удовлетворяют уравнению (1), поэтому уравнение называют уравнением прямой.

Таким образом, всякая линейная функция является уравнением некоторой прямой.

Отметим частные случаи.

1. Пусть , т. е. линейная функция определяется уравнением

Прямая, определяемая этим уравнением, проходит через начало координат. Здесь пропорционален , т. е. если увеличить (уменьшить) в несколько раз, то и увеличится (уменьшится) во столько же раз.

2. Пусть , т. е. , откуда . Линейная функция определяется уравнением

Этому уравнению соответствует прямая, параллельная оси и отстоящая от нее на расстояние .

На основании всего сказанного в этом параграфе легко решаются следующие задачи.

Пример:

Даны точки и . Нужно узнать, лежат ли эти точки на прямой, уравнение которой имеет вид

Решение:

Если точка лежит на прямой, то ее координаты должны удовлетворять уравнению прямой. Поэтому для решения задачи подставим координаты точки в уравнение, получим . Это тождество, следовательно, точка лежит на прямой. Подставляя координаты точки , получаем . Отсюда видно, что точка не лежит на прямой.

Пример:

Построить прямую, уравнение которой

Решение:

Чтобы построить прямую, надо знать, например, две ее точки. Поэтому дадим произвольное значение, например , и найдем из уравнения значение . Значит, точка лежит на прямой. Это первая точка. Теперь дадим какое-нибудь другое значение, например , и вычислим у из уравнения . Получим. Точка лежит на прямой. Это вторая точка. Строим точки и (рис. 15) и проводим через них прямую, это и есть искомая прямая.

Основное свойство линейной функции

Рассмотрим линейную функцию . Найдем значение этой функции при :

Здесь первое и второе значения различны, они отличаются друг от друга на величину Величину разности , на которую изменяется при переходе от к , назовем приращением независимого переменного . Эту величину часто будем обозначать через , так что . Найдем, насколько изменилось значение при изменении , на . Для этого вычтем из значение :

т. е. приращение линейной функции пропорционально приращению независимого переменного.

Это и есть основное свойство линейной функции.

Заметим, что , может быть больше, а может быть и меньше, чем . Поэтому может быть как положительным, так и отрицательным числом, иначе говоря, приращение независимого переменного может быть любого знака. То же самое относится и к приращению функции, т. е. к величине.

Пример:

Найдем приращение функции , если приращение независимого переменного .

Решение:

По основному свойству . Приращение этой же функции , если , будет равно . В этом случае приращения независимого переменного и функции отрицательны, т. е. в этом случае и независимое переменное и функция не увеличиваются, а уменьшаются.

Пример:

Найдем приращение функции при изменении на . Решение:

Задачи на прямую

Пример:

Найти угол между двумя прямыми, заданными уравнениями

Решение:

При пересечении прямых образуются четыре попарно равных угла. Найдя один из них, легко найти и другие. На рис. 16 прямые обозначены соответственно (1) и (2).

Угол является внешним по отношению к треугольнику , поэтому он равен сумме двух внутренних углов треугольника, с ним не смежных, т. е. откуда Но углы и , непосредственно неизвестны, а известны их тангенсы. Поэтому напишем

Пример:

Найти угол между прямыми, заданными уравнениями . Здесь ;

Решение:

Применяя формулу (1), получим:

Если же будем считать, что то

Получены два ответа: сначала найден острый угол между заданными прямыми, а затем — тупой.

Если заданы две параллельные прямые, то углы и , равны, как соответственные, следовательно, тангенсы их тоже равны

Таким образом, мы приходим к выводу: если прямые параллельны, то их угловые коэффициенты равны.

Если прямые перпендикулярны, то угол между ними равен 90°, т. е. . Но тангенс прямого угла не существует, поэтому формула (1) не должна давать ответа, а это может быть только в том случае, когда знаменатель равен нулю (на нуль делить нельзя):

Это и есть условие перпендикулярности двух прямых. Это условие удобно запомнить в следующей формулировке: если две прямые перпендикулярны, то их угловые коэффициенты обратны по величине и противоположны по знаку.

Пример:

Найдем угол между прямыми, заданными уравнениями Здесь угловые коэффициенты (первый равен 3, а второй ) обратны по величине и противоположны по знаку.

Решение:

Следовательно, рассматриваемые прямые перпендикулярны.

Пример:

Даны две точки: , где , (т. е. эти точки не лежат на одной прямой, параллельной оси ). Написать уравнение прямой, проходящей через точки и .

Решение:

Искомая прямая не параллельна оси , поэтому ее уравнение можно написать в виде . Значит, для решения задачи надо определить числа и . Так как прямая проходит через точки , и , то координаты этих точек должны удовлетворять уравнению , т. е.

В уравнениях и все числа, кроме и , известны, поэтому эти уравнения можно рассматривать как систему уравнений относительно и .

Решая систему, находим:

Подставляя найденные выражения в уравнение , получим

Это и есть уравнение прямой, проходящей через две точки, не расположенные на прямой, параллельной оси . Полученному уравнению можно придать форму, удобную для запоминания, а именно:

Пример:

Написать уравнение прямой, проходящей через данную точку и образующей с осью угол .

Решение:

Прежде всего найдем угловой коэффициент искомой прямой: он равен тангенсу угла . Обозначим . Значит, уравнение прямой можно написать в виде , где пока число неизвестно.

Так как прямая должна проходить через точку , то координаты точки удовлетворяют этому уравнению, т. е.

Находим отсюда неизвестное , получим . Подставляя найденное в уравнение , будем иметь

Это и есть уравнение прямой, проходящей через точку в заданном направлении.

Если в уравнении (4) менять направление, не меняя точку , то получим уравнение всех прямых, проходящих через заданную точку. Уравнение , в котором переменное, а и не меняются, называется уравнением пучка прямых, проходящих через точку .

Пример:

Напишем уравнение прямой, проходящей через точку и образующей с осью угол 45°.

Решение:

Так как , то угловой коэффициент равен 1; . Уравнение прямой запишется в виде

Общее уравнение прямой. Неявная линейная функция

Рассмотрим уравнение первой степени с двумя неизвестными

Решим его относительно :

т. е. мы получили линейную функцию, где ,

Уравнения (1) и (2) равносильны, поэтому пара чисел и , удовлетворяющих уравнению (2), будет удовлетворять и уравнению (1). Так как уравнению (2) соответствует некоторая прямая, то эта же прямая будет соответствовать и уравнению (1).

Координаты любой точки, лежащей на этой прямой, удовлетворяют уравнению (1), поэтому будем называть его также уравнением прямой. Рассмотрим особо случай, когда , так как на нуль делить нельзя. Уравнение (1) примет вид или , откуда . Поэтому, каков бы ни был всегда равен . Это имеет место для прямой, параллельной оси ; в самом деле, на ней можно найти точку с любой ординатой, но все точки этой прямой имеют одну и ту же абсциссу. Таким образом, любому уравнению первой степени соответствует некоторая прямая. Придавая в уравнении (1) коэффициентам А, В и С различные значения, можно получить любое уравнение первой степени. Поэтому уравнение (1) называют общим уравнением прямой.

Из уравнения (1) (если ) можно определить , т. е. получить линейную функцию; поэтому говорят, что уравнение (1) определяет неявно линейную функцию или что уравнение (1) есть неявная линейная функция.

Система двух уравнений первой степени

Напомним, что две прямые, расположенные на плоскости, могут или пересекаться, или быть параллельными (т. е. не пересекаться), или сливаться (в этом случае можно сказать, что они пересекаются в каждой своей точке). Рассмотрим систему двух уравнений

Каждое из этих уравнений является уравнением прямой. Решить систему — это значит найти значения и , которые удовлетворяют и первому и второму уравнениям. Но так как и определяют точку, то следовательно, решить систему—это значит найти точку, лежащую и на первой и на второй прямых, т. е. найти точку пересечения прямых.

Пример:

Найдем точку пересечения двух прямых:

Решение:

Решая эту систему, получим: т. е. прямые пересекаются в точке (1, 2) (рис. 17).

Пример:

Найдем точку пересечения двух прямых:

Решение:

Решая эту систему, получим: Последнее равенство нелепо, значит, прямые не пересекаются, т. е. они параллельны.

Пример:

Найдем точку пересечения данных прямых

Решение:

Решая эту систему, получим:

Полученное равенство всегда справедливо, т. е. справедливо при любом значении . Это значит, что две прямые пересекаются в каждой своей точке, что может быть только тогда, когда они сливаются.

Заметим, что два уравнения, рассматриваемые в этом примере, являются равносильными, поэтому они и представляют одну и ту же прямую.

Примеры применения линейной функции

Линейная функция встречается в формулировках многих физических законов и технических задач. Приведем примеры.

Пример:

Если точка движется равномерно по прямой, то ее расстояние от выбранной точки (от начала координат) выражается при помощи уравнения , где — начальное расстояние, —скорость, — время; это, как мы уже знаем, есть линейная функция.

Пример:

Закон Ома записывается в виде , где — напряжение, — сопротивление и —ток. Если не изменяется, то является линейной функцией тока .

Пример:

Если стоимость провоза единицы товара по железной дороге равна руб. за километр, то стоимость провоза единиц товара на км равна

Если же стоимость товара на месте равна руб., то после перевозки за него надо заплатить

Здесь — линейная функция .

Линейная функция встречается в различных областях, но, где бы она ни встречалась, ее всегда можно рассматривать как уравнение прямой. Этим обстоятельством часто пользуются при решении задач.

Пример:

Два города А и В, расстояние между которыми равно 300 км, находятся на одной железнодорожной магистрали. На этой же магистрали между городами А к В надо выбрать пункт С, в котором предполагается устроить склад нефти для снабжения указанных городов. Надо выбрать пункт С так, чтобы общая стоимость перевозок нефти для снабжения города А и города В была наименьшей. Известно, что город А потребляет 400 т нефти, а город В —200 т. Перевозка одной тонны нефти на один километр обходится в руб.

Решение:

Обозначим расстояние от А до предполагаемого пункта С через . Тогда расстояние от города В до С равно 300 — . Стоимость перевозки одной тонны нефти из С в А равна руб., а перевозки 400 т—400 руб. Аналогично перевозка нефти из С в В будет стоить руб. Стоимость всех перевозок, которую обозначим через , будет выражаться так:

Это линейная функция. Если примем за абсциссу, а за ординату точки, то полученная линейная функция опредеяет уравнение некоторой прямой. Угловой коэффициент ее равен , т. е. положителен, следовательно, эта прямая образует с осью острый угол и поэтому с увеличением независимого переменного поднимается вверх. По смыслу задачи величина заключена между 0 и 300, т. е. . При величина у принимает значение 60000а, а при — значение 120000а. Ясно, что 60 000а есть наименьшее из возможных значений, 120 000а— наибольшее.

Так как пункт С надо выбрать так, чтобы стоимость была наименьшей, то его следует расположить в городе А; если же этого сделать нельзя по каким-либо соображениям, то, чем ближе расположить его к А, тем выгодней.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Квадратичная функция
  • Тригонометрические функции
  • Производные тригонометрических функции
  • Производная сложной функции
  • Функции нескольких переменных
  • Комплексные числ
  • Координаты на прямой
  • Координаты на плоскости

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Аналитическая геометрия на плоскости с примерами решения и образцами выполнения

Аналитическая геометрия — область математики, изучающая геометрические образы алгебраическими методами. Еще в XVII в. французским математиком Декартом был разработан метод координат, являющийся аппаратом аналитической геометрии.

В основе метода координат лежит понятие системы координат. Мы познакомимся с прямоугольной (или декартовой) и полярной системами координат.

Прямоугольная система координат

Две взаимно перпендикулярные оси Ох и Оу, имеющие общее начало О и одинаковую масштабную единицу (рис. 8), образуют прямоугольную систему координат на плоскости.

Ось Ох называется осью абсцисс, ось Оу — осью ординат, а обе оси вместе — осями координат. Точка О пересечения осей называется началом координат. Плоскость, в которой расположены оси Ох и Оу, называется координатной плоскостью и обозначается Оху.

Пусть М — произвольная точка плоскости. Опустим из нее перпендикуляры МА и MB на оси Ох и Оу.

Прямоугольными координатами х и у точки М будем называть соответственно величины OA и ОВ направленных отрезков и : х= OA, у= ОВ.

Координаты хи у точки М называются соответственно ее абсцис-ой и ординатой. Тот факт, что точка М имеет координаты х и у, символически обозначают так: М (х; у). При этом первой в скобках указывают абсциссу, а второй — ординату. Начало координат имеет координаты (0; 0).

Таким образом, при выбранной системе координат каждой точке М плоскости соответствует единственная пара чисел (х;у) — ее прямоугольные координаты, и, обратно, на каждой паре чисел (х; у) соответствует, и притом одна, точка М плоскости Оху такая, что ее абсцисса равна х, а ордината у.

Итак, введение прямоугольной системы координат на плоскости позволяет установить взаимно однозначное соответствие между множеством всех точек плоскости и множеством пар чисел, что дает возможность при решении геометрических задач применять алгебраические методы.

Оси координат разбивают плоскость на четыре части, их называют четвертями, квадрантами или координатными углами и нумеруют римскими цифрами I, II, III, IV так, как показано на рис. 9. На рис. 9 указаны также знаки координат точек в зависимости от их расположения в той или иной четверти.

Простейшие задачи аналитической геометрии на плоскости

Расстояние между двумя точками.

Теорема:

Для любых двух точек плоскости расстояние d между ними выражается формулой

Доказательство:

Опустим из точек перпендикуляры соответственно на оси Оу и Ох и обозначим через К точку пересечения прямых (рис. 10). Точка К имеет координаты , поэтому (см. гл. 1, § 3)

Так как треугольник — прямоугольный, то по теореме Пифагора

2. Площадь треугольника.

Теорема:

Для любых точек , не лежащих на одной прямой, площадь s треугольника ABC выражается формулой

Доказательство:

Площадь треугольника ABC, изображенного на рис. 11, можно найти так:

где — площади соответствующих трапеций. Поскольку

подставив выражения для этих площадей в равенство (3), получим формулу

из которой следует формула (2). Для любого другого расположения треугольника ABC формула (2) доказывается аналогично.

Пример:

Даны точки А (1; 1), В (6; 4), С (8; 2). Найти площадь треугольника ABC. По формуле (2):

3. Деление отрезка в данном отношении. Пусть на плоскости дан произвольный отрезок и пусть М—любая точка этого отрезка, отличная от точки (рис. 12).

Число , определяемое равенством

называется отношением, в котором точка М делит отрезок .

Задача о делении отрезка в данном отношении состоит в том, чтобы по данному отношению к и данным координатам точек и найти координаты точки М.

Решить эту задачу позволяет следующая теорема.

Теорема:

Если точка М (х; у) делит отрезок в отношении то координаты этой точки определяются формулами

где — координаты точки ; — координаты точки

Доказательство:

Пусть прямая не перпендикулярна оси Ох. Опустим перпендикуляры из точек , , на ось Ох и обозначим точки их пересечения с осью Ох соответственно через (рис. 12). На основании теоремы элементарной геометрии о пропорциональности отрезков прямых, заключенных между параллельными прямыми, имеем

но (см. гл. 1, § 3).

Так как числа одного и того же знака (при они положительны, а при —отрицательны), то Поэтому откуда Если прямая перпендикулярна оси Ох, то и эта формула также, очевидно, верна. Получена первая из формул (5). Вторая формула получается аналогично.

Следствие. Если — две произвольные точки и точка М (х; у) — середина отрезка т. е. , то = 1, и по формулам (5) получаем

Таким образом, каждая координата середины отрезка равна полусумме соответствующих координат.

Пример:

Даны точки . Найти точку М (х; у), которая в два раза ближе к , чем .

Решение:

Искомая точка М делит отрезок в отношении =1\2. Применяя формулы (5), находим координаты этой точки: х=3, у=2.

Полярные координаты

Наиболее важной после прямоугольной системы координат является полярная система координат. Она состоит из некоторой точки О, называемой полюсом, и исходящего из нее луча ОЕ — полярной оси. Кроме того, задается единица масштаба для измерения длин отрезков.

Пусть задана полярная система координат и пусть М — произвольная точка плоскости. Пусть р — расстояние точки М от точки О; ф — угол, на который нужно повернуть полярную ось для совмещения с лучом ОМ (рис. 13).

Полярными координатами точки М называются числа р и «р. При этом число р считается первой координатой и называется полярным радиусом, число ф — второй координатой и называется полярным углом.

Точка М с полярными координатами р и ф обозначается так: М (р; ф). Очевидно, полярный радиус может иметь любое неотрицательное значение: . Обычно считают, что полярный угол изменяется в следующих пределах:. Однако в ряде случаев приходится рассматривать углы, большие 2n, а также отрицательные углы, т. е. углы, отсчитываемые от полярной оси по часовой стрелке.

Установим связь между полярными координатами точки и ее прямоугольными координатами. При этом будем предполагать, что начало прямоугольной системы координат находится в полюсе, а положительная полуось абсцисс совпадает с полярной осью. Пусть точка М имеет прямоугольные координаты х и у и полярные координаты р и ф (рис. 14). Очевидно,

Формулы (1) выражают прямоугольные координаты через полярные. Выражения полярных координат через прямоугольные следуют из формул (I):

Заметим, что формула tg ф = у/x определяет два значения полярного угла ф, так как ф изменяется от 0 до 2. Из этих двух значений угла ф выбирают то, при котором удовлетворяются равен-

Пример:

Даны прямоугольные координаты точки: (2; 2). Найти ее полярные координаты, считая, что полюс совмещен с началом прямоугольной системы координат, а полярная ось совпадает с положительной полуосью абсцисс.

Решение:

По формулам (2) имеем

Согласно второму из этих равенств или . Но так как х=2>0 и х = 2>0, то нужно взять .

Преобразование прямоугольных координат

При решении многих задач аналитической геометрии наряду с данной прямоугольной системой координат приходится вводить и другие прямоугольные системы координат. При этом, естественно, изменяются как координаты точек, так и уравнения кривых. Возникает задача: как, зная координаты точки в одной системе координат, найти координаты этой же точки в другой системе координат. Решить эту задачу позволяют формулы преобразования координат.

Рассмотрим два вида преобразований прямоугольных координат:

1) параллельный сдвиг осей, когда изменяется положение начала координат, а направления осей остаются прежними;

2) поворот осей координат, когда обе оси поворачиваются в одну сторону на один и тот же угол, а начало координат не изменяется.

1.Параллельный сдвиг осей. Пусть точка М плоскости имеет координаты (х; у) в прямоугольной системе координат Оху. Перенесем начало координат в точку О’ (а; b), где а и b — координаты нового начала в старой системе координат Оху. Новые оси координат О’х’ и О’у’ выберем сонаправленными со старыми осями Ох и Оу. Обозначим координаты точки М в системе О’х’у’ (новые координаты) через (х’; у’). Выведем формулы, выражающие связь между новыми и старыми координатами точки М. Для этого проведем перпендикуляры и введем обозначения для точек пересечения прямых соответственно с осями О’х’ и О’у’ (рис. 15). Тогда, используя основное тождество (гл. 1, § 3), получаем

Это и есть искомые формулы.

2.Поворот осей координат. Повернем систему координат Оху вокруг начала координат О на угол а в положение Ох’у’ (рис. 16).

Пусть точка М имеет координаты (х; у) в старой системе координат Оху и координаты (х’; у’) в новой системе координат Ох’у’. Выведем формулы, устанавливающие связь между старыми и новыми координатами точки М. Для этого обозначим через (р; в) полярные координаты точки М, считая полярной осью положительную полуось Ох, а через (р; 0′) — полярные координаты той же точки М, считая полярной осью положительную полуось Ох’.

Очевидно, в каждом случае . Далее, согласно формулам (1) из § 3

Выражая из этих равенств х’ и у’ через х и у, получим

Пример:

Определить координаты точки М (3; 5) в новой системе координат О’х’у’, начало О’ которой находится в точке ( — 2; 1), а оси параллельны осям старой системы координат Оху.

Решение:

По формуле (2) имеем

т. е. в новой системе координат точка М имеет координаты (5; 4).

Уравнение линии на плоскости

Рассмотрим соотношение вида

связывающее переменные величины х и у. Равенство (1) будем называть уравнением с двумя переменными х, у, если это равенство справедливо не для всех пар чисел х и у.

Примеры уравнений:

Если равенство (1) справедливо для всех пар чисел х и у, то оно называется тождеством.

Примеры тождеств:

Важнейшим понятием аналитической геометрии является понятие уравнения линии. Пусть на плоскости заданы прямоугольная система координат и некоторая линия L (рис. 17).

Определение. Уравнение (1) называется уравнением линии L (в заданной системе координат), если этому уравнению удовлетворяют координаты х и у любой точки, лежащей на линии L, и не удовлетворяют координаты никакой точки, не лежащей на этой линии.

Из определения следует, что линия L представляет собой множество всех тех точек плоскости, координаты которых удовлетворяют уравнению (1). Будем говорить, что уравнение (1) определяет (или задает) линию L.

Понятие уравнения линии дает возможность решать геометрические задачи алгебраическими методами. Например, задача нахождения точки пересечения двух линий, определяемых уравнениями х + у = 0 и , сводится к алгебраической задаче решения системы этих уравнений.

Линия L может определяться уравнением вида

Где — полярные координаты точки.

Рассмотрим примеры уравнений линий.

1) х—у=0. Записав это уравнение в виде у—х, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, представляет собой биссектрисы I и III координатных углов. Это и есть линия, определенная уравнением х-у=0 (рис. 18).

2) . Представив уравнение в виде = 0, заключаем, что множество точек, координаты которых удовлетворяют данному уравнению, — это две прямые, содержащие биссектрисы четырех координатных углов (рис. 19).

3) Множество точек, координаты которых удовлетворяют этому уравнению, состоит из одной точки (0; 0). В данном случае уравнение определяет, как говорят, вырожденную линию.

4) Так как при любых х н у числа неотрицательны, то Значит, нет ни одной точки, координаты которой удовлетворяют данному уравнению, т. е. никакого геометрического образа на плоскости данное уравнение не определяет.

5) p = acosф, где a — положительное число, переменные р и ф— полярные координаты. Обозначим через М точку с полярными координатами (р; ф), через А — точку с полярными координатами (а; 0) (рис. 20). Если p = acosф, где , то угол ОМА — прямой, и обратно. Следовательно, множество точек, полярные координаты которых удовлетворяют данному уравнению, это окружность с диаметром OA.

6) p=aф, где а — положительное число; р и ф — полярные координаты. Обозначим через М точку с полярными координатами (р; ф). Если ф=0, то и р = 0. Если ф возрастает, начиная от нуля, то р возрастает пропорционально ф. Точка М (р; ф), таким образом, исходя из полюсу, движется вокруг него с ростом ф, одновременно удаляясь от него. Множество точек, полярные координаты которых удовлетворяют уравнению р = аф,- называется спиралью Архимеда (рис. 21). При этом предполагается, что ф может принимать любые неотрицательные значения.

Если точка М совершает один полный оборот вокруг полюса, то ф возрастает на , а р — на , т. е. спираль рассекает любую прямую, проходящую через полюс, на равные отрезки (не считая отрезка, содержащего полюс), которые имеют длину .

В приведенных примерах по заданному уравнению линии исследованы ее свойства и тем самым установлено, что представляет собой эта линия.

Рассмотрим теперь обратную задачу: для заданного какими-то свойствами множества точек, т. е. для заданной линии L, найти ее уравнение.

Пример:

Вывести уравнение (в заданной прямоугольной системе координат) множества точек, каждая из которых отстоит от точки на расстоянии R. Иными словами, вывести уравнение окружности радиуса R с центром в точке .

Решение:

Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле

Если точка М лежит на окружности, то или , т. е. координаты точки М удовлетворяют уравнению

Если же точка М (х; у) не лежит на данной окружности, то , т. е. координаты точки М не удовлетворяют уравнению (2).

Таким образом, искомое уравнение окружности имеет вид (2). Полагая в (2) получаем уравнение окружности радиуса R с центром в начале координат:

Линии первого порядка

Уравнение прямой с угловым коэффициентом. Пусть дана которая прямая. Назовем углом наклона данной прямой к оси Ох угол а на который нужно повернуть ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой. Угол а может иметь различные значения, которые отличаются друг от друга на величину , где n — натуральное число. Чаще всего в качестве угла наклона берут наименьшее неотрицательное значение угла а, на который нужно повернуть (против часовой стрелки) ось Ох, чтобы ее положительное направление совпало с одним из направлений прямой (рис. 23). В таком случае

Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом этой прямой и обозначается буквой k:

Из формулы (1), в частности, следует, что если а=0, т. е. прямая параллельна оси Ох, то k = 0. Если , т. е. прямая перпендикулярна оси Ох, то k = tga теряет смысл. В таком случае говорят, что угловой коэффициент «обращается в бесконечность».

Выведем уравнение данной прямой, если известны ее угловой коэффициент k и величина b отрезка ОВ, который она отсекает на оси Оу (рис. 23) (т. е. данная прямая не перпендикулярна оси Ох).

Обозначим через М произвольную точку плоскости с координатами х и у. Если провести прямые BN и NM, параллельные осям, то в случае к0 образуется прямоугольный треугольник BNM. Точка М лежит на прямой тогда и только тогда, когда величины NM и BN удовлетворяют условию

но , BN = x. Отсюда, учитывая формулу (1), получаем, что точка М (х; у) лежит на данной прямой тогда и только тогда, когда ее координаты удовлетворяют уравнению

Уравнение (2) после преобразования принимает вид

Уравнение (3) называют уравнением прямой с угловым коэффициентом. Если к = 0, то прямая параллельна оси Ох, и ее уравнение имеет вид у= Ь.

Итак, любая прямая, не перпендикулярная оси Ох, имеет уравнение вида (3). Очевидно, верно и обратное: любое уравнение вида (3) определяет прямую, которая имеет угловой коэффициент k и отсекает на оси Оу отрезок величины b.

Пример:

Построить прямую, заданную уравнением

Решение:

Отложим на оси Оу отрезок ОВ, величина которого равна 2 (рис. 24); проведем через точку В параллельно оси Ох отрезок, величина которого BN = 4, и через точку N параллельно оси Оу отрезок, величина которого NM = 3. Затем проведем прямую ВМ, которая и является искомой. Она имеет угловой коэффициент k=3/4 и отсекает на оси Оу отрезок величины b=2.

равнение прямой, проходящей через данную точку, с данным угловым коэффициентом. В ряде случаев возникает необходимость составить уравнение прямой, зная одну ее точку и угловой коэффициент к. Запишем уравнение прямой в виде (3), где b — пока неизвестное число. Так как прямая проходит через точку координаты этой точки удовлетворяют уравнению (3): Определяя b из этого равенства и подставляя в уравнение (3), получаем искомое уравнение прямой:

Замечание:

Если прямая проходит через точку перпендикулярно оси Ох, т. е. ее угловой коэффициент обращается в бесконечность, то уравнение прямой имеет вид Формально это уравнение можно получить из (4), если разделить уравнение (4) на k и затем устремить k к бесконечности.

Уравнение прямой, проходящей через две данные точки

Пусть даны две точки и (Рис. 25). Запишем уравнение прямой в виде (4), где k — пока неизвестный угловой коэффициент. Так как прямая проходит через точку то координаты этой точки удовлетворяют уравнению (4):

Определяя k из этого равенства (при условии ) и подставляя в уравнение (4), получаем искомое уравнение прямой:

Это уравнение, если можно записать в виде

Если то уравнение искомой прямой имеет вид В этом случае прямая параллельна оси Ох. Если то прямая, проходящая через точки параллельна оси Оу, и ее Уравнение имеет вид

Пример:

Составить уравнение прямой, проходящей через точки A

Решение:

Подставляя координаты точек в соотношение (5), получаем искомое уравнение прямой:

Угол между двумя прямыми

Рассмотрим две прямые . Пусть уравнение имеет вид уравнение — вид (Рис. 26). Пусть — угол между прямыми

Из геометрических соображений устанавливаем зависимость между углами Отсюда

Формула (6) определяет один из углов между прямыми. Второй угол равен

Пример:

Две прямые заданы уравнениями Найти угол между этими прямыми.

Решение:

Очевидно, поэтому по формуле (6) находим
Таким образом, один из углов между данными прямыми равен другой угол

Условия параллельности и перпендикулярности двух прямых

Если прямые параллельны, то В этом случае числитель в правой части формулы (6) равен нулю: = 0, откуда

Таким образом, условием параллельности двух прямых является равенство их угловых коэффициентов.

Если прямые перпендикулярны, т. е.

Таким образом, условие перпендикулярности двух прямых состоит в том, что их угловые коэффициенты обратны по величине и противоположны по знаку. Это условие можно формально получить из формулы (6), если приравнять нулю знаменатель в правой части (6), что соответствует обращению в бесконечность, т. е. равенству

Общее уравнение прямой

Теорема:

В прямоугольной системе координат любая прямая задается уравнением первой степени
и обратно, уравнение (7) при произвольных коэффициентах А, В, С (А и В не равны нулю одновременно) определяет некоторую прямую в прямоугольной системе координат Оху.

Доказательство:

Сначала докажем первое утверждение. Если прямая не перпендикулярна оси Ох, то, как было показано в п. 1, она имеет уравнение y=kx + b, т. е. уравнение вида (7), где A=k, В=-1 и С=b. Если прямая перпендикулярна оси Ох, то все ее точки имеют одинаковые абсциссы, равные величине а отрезка, отсекаемого прямой на оси Ох (рис. 27). Уравнение этой прямой имеет вид х=а, т. е. также является уравнением первой степени вида (7), где А = 1, В = 0, С=—а. Тем самым первое утверждение доказано. Докажем обратное утверждение. Пусть дано уравнение (7), причем хотя бы один из коэффициентов A и В не равен нулю.

Если то (7) можно записать в виде

Полагая получаем уравнение y = kx + b, т- е- уравнение вида (3), которое определяет прямую.

Если В=0, то и (7) принимает вид Обозначается -С/А через а, получаем х = а, т. е. уравнение прямой, перпендикулярной оси Ох.

Линии, определяемые в прямоугольной системе координат уравнением первой степени, называются линиями первого порядка. Таим образом каждая прямая есть линия первого порядка и, обратно, каждая линия первого порядка есть прямая.

Уравнение вида Ах + By + С=0 называется общим уравнением прямой. Оно содержит уравнение любой прямой при соответствующим выборе коэффициентов А, В, С.

Неполное уравнение первой степени. Уравнение прямой «в отрезках»

Рассмотрим три частных случая, когда уравнение Ах + By + С = 0 является неполным, т. е. какой-то из коэффциентов равен нулю.

1) С = 0; уравнение имеет вид Ах+Ву = 0 и определяет прямую, проходящую через начало координат.
2) уравнение имеет вид Ах+С=0 и определяет прямую, параллельную оси Оу. Как было показано в теореме 3.4, это уравнение приводится к виду а — величина отрезка, который отсекает прямая на оси Ох (рис. 27). В частности, если а = 0, то прямая совпадает с осью Оу. Таким образом, уравнение х=0 определяет ось ординат.
3) уравнение имеет вид Ву+С=0 и определяет прямую, параллельную оси Ох. Этот факт устанавливается аналогично предыдущему случаю. Если положить то уравнение принимает вид — величина отрезка, который отсекает прямая на оси Оу (рис. 28). В частности, если b=0, то прямая совпадает с осью Ох. Таким образом, уравнение у= О определяет ось абсцисс.

Пусть теперь дано уравнение Ах+By+C=0 при условии, что ни один из коэффициентов А, В, С не равен нулю. Преобразуем его к виду

Вводя обозначения получаем

Уравнение (8) называется уравнением прямой «в отрезках». Числа а и b являются величинами отрезков, которые прямая отсекает на осях координат. Эта форма уравнения прямой удобна для геометрического построения прямой.

Пример:

Прямая задана уравнением Составить для этой прямой уравнение «в отрезках» и построить прямую.

Решение:

Для данной прямой уравнение «в отрезках» имеет
вид

Чтобы построить эту прямую, отложим на осях координат Ох и Оу отрезки, величины которых соответственно равны а=-5, b=3, и проведем прямую через точки (рис. 29).

Нормальное уравнение прямой. Расстояние от точки до прямой

Пусть дана некоторая прямая L. Проведем через начало координат прямую п, перпендикулярную данной, и назовем ее нормалью к прямой L. Буквой N отметим точку, в которой нормаль пересекает прямую L (рис. 30, а). На нормали введем направление от точки О к точке N. Таким образом, нормаль станет осью. Если точки N и О совпадают, то в качестве направления нормали возьмем любое из двух возможных.

Обозначим через угол, на который нужно повернуть против часовой стрелки ось Ох до совмещения ее положительного направления с направлением нормали, через р— длину отрезка ON.

Тем самым, Выведем уравнение данной прямой, считая известными числа аир. Для этого возьмем на прямой произвольную точку М с полярными координатами где О полюс, Ох — полярная ось. Если точки О и N не совпадают, то из прямоугольного треугольника ONM имеем

Это равенство можно переписать в виде

Так как точки, не лежащие на данной прямой L, не удовлетворению (9), то (9) —уравнение прямой L в полярных координатах. По формулам, связывающим прямоугольные координаты с полярными, имеем: Следовательно, уравнение (9) в прямоугольной системе координат принимает вид

Если точки О и N совпадают, то прямая L проходит через начало координат (рис. 30, б) и р = 0. В этом случае, очевидно, для любой точки М прямой L выполняется равенство Умножая его на р, получаем откуда

Таким образом, и в этом случае уравнение прямой можно представить в виде (10).

Уравнение (10) называется нормальным уравнением прямой L.

С помощью нормального уравнения прямой можно определить расстояние от данной точки плоскости до прямой.

Пусть L — прямая, заданная нормальным уравнением: и пусть точка, не лежащая на этой прямой. Требуется определить расстояние d от точки до прямой L.

Через точку проведем прямую параллельно прямой L. Пусть — точка пересечения с нормалью, — длина отрезка (рис. 31).

Если же точки лежат по разные стороны от точки О, то нормальное уравнение прямой имеет вид где отличается от Следовательно, В этом случае

Таким образом, в каждом из рассмотренных случаев получаем формулу

Отметим, что формула (11) пригодна и в том случае, когда точка лежит на прямой L, т. е. ее координаты удовлетворяют уравнению прямой L: В этом случае по формуле (11) получаем d=0. Из формулы (11) следует, что для вычисления расстояния d от точки до прямой L нужно левую часть нормального уравнения прямой L поставить вместо (х; у) координаты точки и полученное число взять по модулю.

Теперь покажем, как привести общее уравнение прямой к нормальному виду. Пусть

— общее уравнение некоторой прямой, а

— ее нормальное уравнение.

Так как уравнения (12) и (13) определяют одну и ту же прямую, то их коэффициенты пропорциональны. Умножая все члены уравнения (12) на произвольный множитель получаем уравнение

При соответствущем выборе р полученное уравнение обращается в уравнение (13), т. е. выполняются равенства

Чтобы найти множитель р., возведем первые два из этих равенств в квадрат и сложим, тогда получаем

Число р называется нормирующим множителем. Знак нормирующего множителя определяется с помощью третьего из равенств (14). Согласно этому равенству число отрицательное, если СО. Следовательно, в формуле (15) берется знак, противоположный знаку С. Если С=0, то знак нормирующего множителя можно выбрать произвольно.

Итак, для приведения общего уравнения прямой к нормальному виДу надо найти значение нормирующего множителя р, а затем все члены уравнения умножить на р.

Пример. Даны прямая 3х-4у+10=0 и точка М (4; 3). Найти расстояние d от точки М до данной прямой.

Решение. Приведем данное уравнение к нормальному виду. Для этого найдем по формуле (15) нормирующий множитель:

Умножая данное уравнение на р, получаем нормальное уравнение

По формуле (11) находим искомое расстояние:

Линии второго порядка

Рассмотрим три вида линий: эллипс, гиперболу и параболу, уравнения которых в прямоугольной системе координат являются уравнениями второй степени. Такие линии называются линиями второго порядка.

Эллипс

Определение:

Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы эллипса через и расстояние между фокусами через 2с, сумму расстояний от произвольной точки эллипса до фокусов через 2а. По определению, 2а>2с или а>с.

Для вывода уравнения эллипса введем на плоскости прямоугольную систему координат так, чтобы фокусы эллипса лежали на оси абсцисс, а начало координат делило отрезок пополам. Тогда фокусы имеют координаты: (рис. 32). Выведем уравнение эллипса в выбранной системе координат.

Пусть М (х; у) — произвольная точка плоскости. Обозначим через расстояния от точки М до фокусов Числа называются фокальными радиусами точки М. Из определения эллипса следует, что точка М (х; у) будет лежать на данном эллипсе в том и только в том случае, когда

По формуле (1) из § 2 находим

Подставляя эти выражения в равенство (1), получаем

Уравнение (3) и есть искомое уравнение эллипса. Однако для практического использования оно неудобно, поэтому уравнение эллипса обычно приводят к более простому виду. Перенесем второй радикал в правую часть уравнения, а затем возведем обе части в квадрат:

С нова возведем обе части уравнения в квадрат

Введем в рассмотрение новую величину

геометрический смысл которой раскрыт далее. Так как по условию а>с, то >0 и, следовательно, b — число положительное. Из равенства (6) имеем

Поэтому уравнение (5) можно переписать в виде

Разделив обе части на , окончательно получаем

Так как уравнение (7) получено из уравнения (3), то координаты любой точки эллипса, удовлетворяющие уравнению (3), будут удовлетворять и уравнению (7). Однако при упрощении уравнения (3) обе его части дважды были возведены в квадрат и могли появиться «лишние» корни, вследствие чего уравнение (7) могло оказаться неравносильным уравнению (3). Убедимся в том, что если координаты точки удовлетворяют уравнению (7), то они удовлетворяют и уравнению (3), т. е. уравнения (3) и (7) равносильны. Для этого, очевидно, достаточно показать, что величины г, и г2 для любой точки, координаты которой удовлетворяют уравнению (7), удовлетворяют соотношению (1). Действительно, пусть координаты х и у некоторой точки удовлетворяют уравнению (7). Тогда, подставляя в выражение (2) значение , полученное из (7), после несложных преобразований найдем, что Так как [это следует из (7)J и c/a 0, и поэтому

Аналогично найдем, что Складывая почленно эти равенства, получаем соотношение (1), что и требовалось установить. Таким образом, любая точка, координаты которой удовлетворяют уравнению (7), принадлежит эллипсу, и наоборот, т. е. уравнение (7) есть уравнение эллипса. Уравнение (7) называется бионическим (или простейшим) уравнением эллипса. Таким образом эллипс—линия второго порядка.

Исследуем теперь форму эллипса по его каноническому уравнению (7). Заметим, что уравнение (7) содержит только члены с четными степенями координат х и у, поэтому эллипс симметричен относительно осей Ох и Оу а также относительно начала координат. Таким образом, можно знать форму всего эллипса, если установить вид той его части, которая лежит в I координатном угле. Для этой части , поэтому, разрешая уравнение (7) относительно у, получаем

Из равенства (8) вытекают следующие утверждения.

1)Если x=0, то у=b. Следовательно, точка (0; b) лежит на эллипсе. Обозначим ее через В.

2)При возрастании х от 0 до а у уменьшается.

3)Если х=а, то у=0. Следовательно, точка (а; 0) лежит на эллипсе. Обозначим ее через А.

4)При х>а получаем мнимые значения у. Следовательно, точек эллипса, у которых х>а, не существует.

Итак, частью эллипса, расположенной в I координатном угле, является дуга ВА (рис. 33).

Произведя симметрию относительно координатных осей, получим весь эллипс.

Замечание. Если а=b, то уравнение (7) принимает вид . Это уравнение окружности радиуса а. Таким образом, окружность — частный случай эллипса. Заметим, что эллипс можно получить из окружности радиуса а, если сжать ее в а/b раз вдоль оси Оу. При таком сжатии точка (х; у) перейдет в точку (х; у,), где . Подставляя в уравнение окружности, получаем уравнение эллипса

Оси симметрии эллипса называются его осями, а центр симметрии (точка пересечения осей) — центром эллипса. Точки, в которых эллипс пересекает оси, называются его вершинами. Вершины ограничивают на осях отрезки, равные 2а и 2b. Из равенства (6) следует, что . Величины а и b называются соответственно большой и малой полуосями эллипса. В соответствии с этим оси эллипса называются большой и малой осями.

Введем еще одну величину, характеризующую форму эллипса.

Определение:

Эксцентриситетом эллипса называется отношение , где с — половина расстояния между фокусами, а — большая полуось эллипса.

Эксцентриситет обычно обозначают буквой . Так как с Гипербола

Определение:

Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний от двух данных точек, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Обозначим фокусы гиперболы через и расстояние . между фокусами через 2с, а модуль разности расстояний от произвольной точки гиперболы до фокусов через 2а. По определению, 2а а, то и b — число положительное. Из равенства (14) имеем

Уравнение (13) принимает вид

Как и для эллипса, можно доказать равносильность уравнений (15) и (11). Уравнение (15) называется каноническим уравнением гиперболы.

Исследуем форму гиперболы по ее каноническому уравнению. Так как уравнение (15) содержит члены только с четными степенями координат х и у, то гипербола симметрична относительно осей Ох и Оу, а также относительно начала координат. Поэтому достаточно рассмотреть только часть гиперболы, лежащую в 1 координатном угле. Для этой части у0, поэтому, разрешая уравнение (15) относительно у, получаем

Из равенства (16) вытекают следующие утверждения.

1)Если , то у получает мнимые значения, т. е. точек гиперболы с абсциссами нет.

2)Если х=а, то у= 0, т. е. точка (а; 0) принадлежит гиперболе. Обозначим ее через А.

3)Если х>а, то у>0, причем у возрастает при возрастании х и при . Переменная точка М (х; у) на гиперболе движется с ростом х «вправо» и «вверх», ее начальное положение-точка А (а; 0) (рис. 35). Уточним, как именно точка М уходит в бесконечность.

Для этого кроме уравнения (16) рассмотрим уравнение

которое определяет прямую с угловым коэффициентом k=b/a, проходящую через начало координат. Часть этой прямой, расположенная в I координатном угле, изображена на рис. 35. Для ее построения можно использовать прямоугольный треугольник OAВ с катетами ОА = а и АВ = b.

Покажем, что точка М, уходя по гиперболе в бесконечность, неограниченно приближается к прямой (17), которая является асимптотой гиперболы.

Возьмем произвольное значение х(ха) и рассмотрим две точки М (х; у) и N (х; e), где

Точка М лежит на гиперболе, точка N — на прямой (17). Поскольку обе точки имеют одну и ту же абсциссу х, прямая MN перпендикулярна оси Ох (рис. 36). Найдем длину отрезка MN. Прежде всего заметим, что при ха.

Это означает, что при одной и той же абсциссе точка гиперболы лежит под соответствующей точкой асимптоты. Таким образом,

Из полученного выражения следует, что стремится к нулю при , так как знаменатель стремится к а числитель есть постоянная величина ab.

Обозначим через Р основание перпендикуляра, опущенного из точки М на прямую (17). Тогда — расстояние от точки Л) до этой прямой. Очевидно, , а так как 0, то и подавно при , т. е. точка М неограниченно приближается к прямой (17), что и требовалось показать.

Вид всей гиперболы теперь можно легко установить, используя симметрию относительно координатных осей (рис. 37). Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты: , первая из которых уже рассмотрена, а вторая представляет собой ее симметричное отражение относительно оси Ох (или оси Оу).

Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (они на рис. 37 обозначены буквами А’ и А). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник ВВ’С’С со сторонами 2а и 2b (рис. 37) называется основным прямоугольником гиперболы. Величины а и Ь называются соответственно действительной и мнимой полуосями гиперболы.

также определяет гиперболу. Она изображена на рис. 37 пунктирными линиями; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (15). Обе эти гиперболы имеют одни и те же асимптоты.

Гипербола с равными полуосями (а = b) называется равносто-нней и ее каноническое уравнение имеет вид

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Определение. Эксцентриситетом гиперболы называется отношение , где с — половина расстояния между фокусами, а — действительная полуось гиперболы.

Эксцентриситет гиперболы (как и эллипса) обозначим буквой е. Так как с>а, то е>1, т. е. эксцентриситет гиперболы больше единицы. Заметив, что , найдем

Из последнго равенства легко получается геометрическое истолкование эксцентриситета гиперболы. Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше отношение b/а, а это означает, что основной прямоугольник более вытянут в направлении действительной оси. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

В случае равносторонней гиперболы

Директрисы эллипса и гиперболы

Определение:

Две прямые, перпендикулярные большой оси эллипса и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами эллипса (здесь а — большая полуось, е — эксцентриситет эллипса).

Уравнения директрис эллипса, заданного каноническим уравнением (7), имеют вид

Так как для эллипса е а. Отсюда следует, что правая директриса расположена правее правой вершины эллипса, а левая — левее его левой вершины (рис. 38).

Определение:

Две прямые, перпендикулярные действительной Си гиперболы и расположенные симметрично относительно центра на расстоянии а/е от него, называются директрисами гиперболами (здесь а—действительная полуось, е—эксцентриситет гиперболы).

Уравнения директрис гиперболы, заданной каноническим уравнением (15), имеют вид

Так как для гиперболы е>1, то а/е 1. Соответственно, возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии е = 1. Оказывается это новая линия второго порядка, называемая параболой.

Парабола

Определение:

Параболой называется множество всех точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Для вывода уравнения параболы введем на плоскости прямоугольную систему координат так, чтобы ось абсцисс проходила через фокус перпендикулярно директрисе, и будем считать ее положительным направлением направление от директрисы к фокусу; начало координат расположим посередине между фокусом и директрисой. Выведем уравнение параболы в выбранной системе координат.

Пусть М (х; у) — произвольная точка плоскости. Обозначим через r расстояние от точки М до фокуса , через d- расстояние от точки М до директрисы, а через р — расстояние от фокуса до директрисы (рис. 40). Величину р называют парамет ром параболы, его геометрический смысл раскрыт далее. Точка М будет лежать на данной параболе в. том и только в том случае, когда

Фокус F имеет координаты (р/2; 0); поэтому по формуле (1) из § 2 находим

Расстояние d, очевидно, выражается равенством (рис. 40)

Отметим, что эта формула верна только для хО. Если же х d, и, следовательно, такая точка не лежит на параболе. Заменяя в равенстве (24) г и d их выражениями (25) и (26), найдем

Это и есть искомое уравнение параболы. Приведем его к более удобному виду, для чего возведем обе части равенства (27) в квадрат. Получаем

Проверим, что уравнение (28), полученное после возведения в квадрат обеих частей уравнения (27), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки М (х; у), координаты которой удовлетворяют уравнению (28). выполнено соотношение (24). Действительно, из уравнения (28) вытекает, что х0, поэтому для точки М (х; у) с неотрицательной абсциссой d= р/2+х. Подставляя значение из (28) в выражение (25) для r и учитывая, что хО, получаем r=р/2+x, величины r и d равны, что и требовалось показать. Таким образом, уравнению (28) удовлетворяют координаты точек данной параболы и только они, т. е. уравнение (28) является уравнением иной параболы.

Уравнение (28) называется каноническим уравнением параболы. о уравнение второй степени. Таким образом, парабола есть ли-я второго порядка.

Исследуем теперь форму параболы по ее уравнению (28). Так к уравнение (28) содержит у только в четной степени, то пара-ла симметрична относительно оси Ох. Следовательно, достаточно смотреть только ее часть, лежащую в верхней полуплоскости. Для этой части у0, поэтому разрешая уравнение (28) относительно у, получаем

Из равенства (29) вытекают следующие утверждения.

1)Если х Общее уравнение линии второго порядка

Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.

Общее уравнение линии второго порядка имеет следующий вид:

где коэффициенты А, 2В, С, 2D, 2Е и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е.

1.Приведение общего уравнения линии второго порядка к простейшему виду.

Лемма:

Пусть в прямоугольной системе координат Оху задано уравнение (1) и пусть Тогда с помощью параллельного сдвига и последующего поворота осей координат уравнение (1) приводится к виду

где А’, С’, F’— некоторые числа; (х»; у») — координаты точки в новой системе координат.

Доказательство:

Пусть прямоугольная система координат О’х’у’ получена параллельным сдвигом осей Ох и Оу, причем начало координат перенесено в точку . Тогда старые координаты (х; у) будут связаны с новыми (х’; у’) формулами

(см. формулы (1), § 4). В новых координатах уравнение (1) принимает вид

В уравнении (3) коэффициенты D’ и Е’ обращаются в нуль, если подобрать координаты точки так, чтобы выполнялись равенства

Так как , то система (4) имеет единственное решение относительно

Если пара чисел представляет собой решение системы (4), то уравнение (3) можно записать в виде

Пусть теперь прямоугольная система координат О’х»у» получена поворотом системы О’х’у’ на угол а. Тогда координаты х’, у’ будут связаны с координатами х», у» формулами

(см. формулы (3), § 4). В системе координат О’х»у» уравнение (5) принимает вид

Выберем угол а так, чтобы коэффициент В’ в уравнении (6) обратился в нуль. Это требование приводит к уравнению 2В cos 2а=(А — С) sin 2а относительно а. Если А = С, то cos2a=0, и можно положить . Если же АС, то выбираем а=, и уравнение (6) принимает вид

т. е. получили уравнение (2).

Замечание. Уравнения (4) называются уравнениями центра линии второго порядка, а точка , где —решение системы (4), называется центром этой линии. Заметим, что необходимым и достаточным условием существования единственного решения системы (4) является отличие от нуля числа , называемого определителем системы (см. гл. 10 § 2).

2.Инвариантность выражения . Классификация линий второго порядка. Коэффициенты А, В и С при старших членах уравнения (1) при параллельном переносе осей координат, как следует из доказательства леммы 3.1, не меняются, но они меняются при повороте осей координат. Однако выражение остается неизменным как при переносе, так и при повороте осей, т. е. не зависит от преобразования координат. Действительно, при параллельном переносе этот факт очевиден [см. формулы (Г) и (5)J; проверим его при повороте осей. Для этого воспользуемся выражениями для коэффициентов А’, В’ и С’ уравнения (6). Имеем

Раскрыв скобки и приведя подобные члены, получим

что и требовалось показать.

Величина называется инвариантом общего уравнения линии второго порядка. Она имеет важное значение в исследовании линий второго порядка.

В зависимости от знака величины линии второго порядка разделяются на следующие три типа:

1)эллиптический, если >0;

2)гиперболический, если 0, согласно лемме 3.1, общее уравнение линии второго порядка может быть приведено к виду (для удобства записи опускаем штрихи у коэффициентов и координат)

Возможны следующие случаи:

а) А>0, С>0 (случай А 0, С>0 умножением уравнения на —1) и F 0, С>0 и F>0. Тогда, аналогично предыдущему, уравнение можно привести к виду

Этому уравнению не удовлетворяют координаты никакой точки плоскости. Оно называется уравнением мнимого эллипса.

в)А>О, С>О, F = 0. Уравнение имеет вид

Ему удовлетворяют координаты только одной точки х = 0, у = 0. Такое уравнение назовем уравнением пары мнимых пересекающихся прямых.

2)Гиперболический тип. Поскольку 0, С О сводится к случаю а>0, С 0, С Аналитическая геометрия на плоскости — решение заданий и задач по всем темам с вычислением

Декартовы системы координат. Простейшие задачи

1°. Введение координат позволяет решать многие задачи алгебраическими методами и, обратно, алгебраическим объектам (выражениям, уравнениям, неравенствам) придавать геометрическую интерпретацию, наглядность. Наиболее привычна для нас прямоугольная система координат Оху: две взаимно перпендикулярные оси координат — ось абсцисс Ох и ось ординат Оу — с единой единицей масштаба.

2°. Расстояние между данными точками (рис. 2.1) вычисляется по формуле

3°. Будем говорить, что точка делит отрезок в отношении, если (рис. 2.2). Если — данные точки, то координаты точки М определяются по формулам

При = 1 точка М делит пополам и

Примеры с решениями

Пример:

Отрезок АВ делится точкой С(-3,0) в отношении Найти длину АВ, если задана точка А(—5, -4).

Решение:

1) Для нахождения искомой длины по формуле п. 2° необходимо знать координаты точки , которые определим по формулам п. 3°.

откуда Итак, B(0,6).

3)

Ответ.

Полярные координаты

1°. Если прямоугольная система координат задается двумя взаимно перпендикулярными осями координат Ох и Оу , то полярная система задается одним лучом (например, Ох), который обозначается Or и называется полярной осью, а точка Оначалом полярной оси, или полюсом. В полярной системе координат положение точки М на плоскости определяется двумя числами: углом у (в градусах или радианах), который образует луч ОМ с полярной осью, и расстоянием r = ОМ точки М от начала полярной оси. Записываем При этом для точки О: r = 0, — любое.

Если поворот от оси Or к ОМ совершается против часовой стрелки, то считают положительным (рис. 2.3, а), в противном случае — отрицательным.

Переменный луч ОМ описывает всю плоскость, если изменять в пределах

Иногда есть смысл считать, что . В таком случае луч ОМ описывает плоскость бесконечное множество раз (иногда говорят, что ОМ описывает бесконечное множество плоскостей).

2°. Можно совместить ось Or с лучом Ох прямоугольной системы Оху, для того чтобы получить связь полярных координат точки М с прямоугольными (рис. 2.3,6). Имеем очевидные формулы:

Формулы (1) выражают прямоугольные координаты через полярные.

Полярные координаты выражаются через прямоугольные по формулам

Формула определяет два значения полярного угла . Из этих двух значений следует брать то, которое удовлетворяет равенствам (1).

3°. Если в системе Оху привычно иметь дело с функцией у = у(х) (хотя можно и х = х(у)), то в полярной системе столь же привычна функция

4°. Построение кривой выполняется по точкам (чем их больше, тем лучше) с учетом правильного анализа функции , обоснованных выводов о ее свойствах и точности глазомера при проведении линии.

Примеры с решениями

Пример:

Построить кривую (линейная функция).

Решения:

Ясно, что измеряется в радианах, или — число, иначе не имеет смысла. Функция определена только при , и может изменяться от 0 до . Точки с полярными координатами расположены на одном луче (рис. 2.4).

Таким образом, график линейной функции представляет собой спираль с началом в точке О. Эта спираль — след точки при неограниченном повороте текущего (переменного) отрезка ОМ вокруг точки О против часовой стрелки.

Пример:

Построить кривую

Решение:

Проведем анализ данной функции.

1) Эта функция нечетна, поэтому можно ограничиться значениями а тогда

то— периодическая функция с периодом . Можно предположить, что будет какое-то «повторение» графика (это в самом деле имеет место, но аналогия с графиком не совсем адекватная).

3) Функция имеет смысл, если . Этот сектор
плоскости обозначен на рис. 2.5 знаком «+». Если же то , а тогда , и равенство не имеет смысла. На рис. 2.5 этот сектор плоскости заштрихован (изьят из рассмотрения).

4) Далее рассмотрим промежуток и составим таблицу значений функции , . Для того чтобы получить как можно больше точек искомой кривой, берем набор табличных значений для , т.е. как будто мы заполняем сначала третью строку этой таблицы, а затем первую строку, вторую и четвертую .

5) На девяти различных лучах в промежутке надо
построить точки на обозначенных в таблице расстояниях. Правда, на первом и последнем лучах соответствующие точки кривой совпадают с началом координат. Конечно, мы делаем это весьма приблизительно, но именно тут точность глазомера даст наиболее эффективный чертеж. Хорошо при этом иметь под рукой транспортир и циркуль.

6) Мы получили «лепесток» (рис. 2.6) — это треть графика. Другие два лепестка расположены внутри углов со знаками «+». Периодичность сводится к повороту нашего рисунка на угол , затем повторению этого поворота.

7) Полученная трехлепестковая фигура — результат периодичности. В этом состоит отличие от периодичности функции : все точки вида различны, а здесь из точек вида только три различны (при n = 0, n = 1, n = 2), остальные геометрически совпадают с одной из них (рис. 2.7).

Пример:

Построить кривую .

Решение:

1) Для того, чтобы построить график рассматриваемой функции, ограничимся плоскостью Оху, на которой
2) Если , то а если , то .

3) Остается взять табличные значения для — и построить соответствующую таблицу:

4) Соединяя соответствующие точки, получаем линию (рис. 2.8).
5) Если бы мы изменяли в противоположную сторону: , то получили бы аналогичную линию; она обозначена пунктиром.

6) Для того чтобы получить полную замкнутую линию — график функции , рассуждаем так.

Нам надо иметь для промежуток длиною в период . Далее,

в) От имеем как раз один период .

г) Этот промежуток делим на две половины и . На первой его половине реализуется полная линия, второй она не определена.

Остается изобразить эту линию на чертеже — это OABCDEO (рис. 2.9). Угловые координаты этих точек таковы:

Реализована эта линия при полутора полных оборотах текущего радиуса около начала координат, или как бы на двух л истах-плоскостях.

Линии первого порядка

1°. Прямая линия на плоскости отождествляется с множеством всех точек, координаты которых удовлетворяют некоторому линейному уравнению. Различают следующие виды уравнения прямой:

1) Ах + By + С = 0, где А и В не равны одновременно нулю, — общее уравнение прямой;

2) у = kx + b — уравнение прямой с угловым коэффициентом k , при этом , где — угол наклона прямой k оси Ох (точнее, a — угол, на который надо повернуть ось Ох против часовой стрелки до совпадения с прямой, рис. 2.10); b — величина отрезка, отсекаемого прямой на оси Оу;

3) — уравнение прямой в отрезках. Здесь а и b суть отрезки, отсекаемые прямой от осей Ох и Оу соответственно (рис. 2.11);

4) нормальное уравнение прямой. Здесь — угол между положительным направлением оси Ох и перпендикуляром ОР, |р| — длина перпендикуляра ОР (рис. 2.12).

Примечание:

Заметим, что одна прямая (один геометрический объект) может быть задана формально разными уравнениями. Это означает, что соответствующие уравнения для одной прямой должны быть равносильными, а тогда каждое из них можно привести (преобразовать) к любому другому (кроме некоторых исключительных случаев). В связи с этим отметим соотношения между параметрами различных уравнений:

2°. Уравнения конкретных прямых l.

1) l проходит через данную точку и имеет данный угловой коэффициент k (или данное направление : ) при условии, что (рис. 2.13);

2) при условии, что ;

3) l проходит через две данные точки
при условии, что (рис. 2.14, а); 4) при условии, что (рис. 2.14,б).

3°. Угол в между прямыми
определяется через тангенс: ; стрелка означает, что угол определяется как угол поворота от прямой к прямой .

Отсюда, в частности, следуют признаки параллельности и перпендикулярности прямых:

4°. Точка пересечения двух прямых определяется решением системы, составленной из уравнений этих прямых:

5°. Расстояние от данной точки до данной прямой l : определяется по формуле

В частности, — расстояние от начала координат до прямой l .

6°. Пересекающиеся прямые определяют два смежных угла. Уравнения биссектрис этих углов имеют вид

Эти биссектрисы взаимно перпендикулярны (предлагаем доказать это).

7°. Множество всех прямых, проходящих через точку , называется пучком прямых. Уравнение пучка имеет вид или произвольные числа, — точка пересечения ).

8°. Неравенство определяет полуплоскость с ограничивающей ее прямой Ах + By + С = 0. Полуплоскости принадлежит точка , в которой

Примеры с решениями

Пример:

По данному уравнению прямой

  1. общее уравнение;
  2. уравнение с угловым коэффициентом;
  3. уравнение в отрезках;
  4. нормальное уравнение.

Решение:

1) Приведя к общему знаменателю, получим общее уравнение прямой (п. 1°) Зх — 4у — 4 = 0.

2) Отсюда легко получить уравнение прямой с угловым коэффициентом

3) Уравнение в отрезках получим из общего уравнения Зх — 4у = 4 почленным делением на свободный член:

4) Для получения нормального уравнения найдем

и Таким образом, — нормальное уравнение.

Пример:

Составить уравнение прямой, проходящей через точку пересечения прямых х + у — 2 = 0 и Зх + 2у — 5 = 0 перпендикулярно к прямой Зх + 4у — 12 = 0.

Решение:

1) Координаты точки пересечения прямых найдем, решив систему

2) Угловые коэффициенты перпендикулярных прямых связаны (п. 3°) так: . Угловой коэффициент данной прямой равен

(п. 1°). Значит,

3) Искомое уравнение прямой, проходящей через точку и имеющей угловой коэффициент (п. 2°), запишем в виде Приведем его к общему виду: 4х — Зу — 1 = 0.

Пример:

Дан треугольник с вершинами А(1,-1), B(—2,1), С(3, —5). Написать уравнение перпендикуляр

Решение:

1) Сделаем схематический чертеж (рис. 2.15). 2) Медиана ВМ точкой М делит отрезок АС пополам, значит (п. 3°),

3) Уравнение ВМ запишем (п. 2°) в видеили

4) Из условия следует, что (п. 3°).

5) Искомое уравнение имеет вид: или

Пример:

Дан треугольник с вершинами А(7,0), В(3,4), С(2, —3). Найти уравнения стороны АВ, высоты CD, биссектрисы BE, их длины и угол А. Определить вид треугольника по углам. Описать треугольник системой неравенств. Сделать чертеж.

Решение:

Чертеж построен (рис. 2.16).

5) Для составления уравнения биссектрисы BE (п. 6°) нужно знать уравнения ВС и АВ. Найдем уравнение (ВС):

6) Для нахождения высоты CD используем формулу п. 5°:

7) Длину биссектрисы BE найдем так. Точка Е есть точка пересечения двух прямых BE и АС. Найдем уравнение АС:

Координаты точки Е найдем как решение системы

Итак,. Теперь определим расстояние BE:

8) Угол A находим по формуле , где Имеем: , а тогда

9) Пусть a, b, c — стороны треугольника, с — большая из них. Если , то треугольник прямоугольный, если — тупоугольный, если — остроугольный, Квадраты сторон нашего треугольника равны: Поскольку DC — большая сторона и , то треугольник остроугольный.

10) Уравнение (АВ): х + у — 7 = 0. Треугольник AВС находится по отношению к этой прямой в полуплоскости, содержащей точку С(2,-3). В этой точке левая часть уравнения равна 2-3-7 = -8 0 (ибо в точке А(7,0) имеем неравенство 7 • 7 — 0 — 17 > 0).

Под треугольником подразумевается множество точек, лежащих внутри треугольника и на его сторонах, поэтому мы записываем нестрогие неравенства:

Пример:

Полярное уравнение записать прямоугольных координатах.

Решение:

Перепишем сначала данное уравнение в виде и используем формулы:Получаем уравнение прямой: 2х — 5у = 7.

Линии второго порядка

К кривым второго порядка относятся следующие четыре линии: окружность, эллипс, гипербола, парабола. Координаты х, у точек каждой из этих линий удовлетворяют соответствующему уравнению второй степени относительно переменных х и у.

Ниже под геометрическим местом точек (сокращенно ГМТ) подразумевается некоторое множество точек плоскости, координаты которых удовлетворяют определенному условию. Определения кривых второго порядка дадим через ГМТ, указывая свойства этих точек.

Окружность

Окружностью радиуса R с центром в точке называется ГМТ, равноудаленных от точки на расстоянии R.

Каноническое уравнение окружности имеет вид

Примеры с решениями

Пример:

Составить уравнение окружности, диаметром которой является отрезок, отсекаемый координатными осями от прямой Зх -2у + 12 = 0.

Решение:

На рис. 2.17 изображена прямая Зх — 2у + 12 = 0. Она пересекает координатные оси в точках A(-4,0), В(0,6).

1) Центром окружности является точка — середина отрезка АВ. Координаты этой точки определим по формулам
:

2) Радиус R окружности, равный , вычисляем, например, по формуле :

3) Каноническое уравнение искомой окружности имеет вид
Примечание. Если в последнем уравнении выполнить обозначенные действия, то получаем уравнение Оно называется общим уравнением окружности. Это неполное уравнение второй степени относительно переменных х и у.

Эллипс

Эллипсом называется ГМТ, для которых сумма расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина больше расстояния между фокусами.)

Если предположить, что фокусы эллипса расположены в точках а данная величина равна 2а, то из его определения можно получить каноническое уравнение эллипса

При этом а > 0 — большая полуось, b > 0 — малая полуось, с — фокусное расстояние и Точки (а,0) и (-а,0) называют вершинами эллипса.

Сам эллипс изображен на рис. 2.18. Важными характеристиками эллипса являются:

— эксцентриситет ; если то эллипс почти круглый, т.е. близок к окружности, а если то эллипс сплющенный, близок к отрезку [-а; а];

— директрисы эллипса — прямые с уравнениями ;

— расстояния точки М(х,у) эллипса до его фокусов ( до левого, до правого), вычисляющиеся по формулам:

Примеры с решениями

Пример:

Составить уравнение эллипса, симметричного относительно координатных осей и проходящего через точки и .Найти расстояния от точки А до фокусов. Найти эксцентриситет эллипса. Составить уравнения его директрис. Построить чертеж.

Решение:

1) Параметры а и b эллипса найдем, подставив в это уравнение координаты точек А и В. Это приводит к системе

После умножения первого уравнения на 16, а второго на -9 и сложения полученных результатов имеем

Отсюда с учетом b > 0 находим b = 4, а тогда а = 5.

Каноническое уравнение эллипса найдено:

2) Фокусное расстояние

3) Эксцентриситет равен

4) Расстояние от А до фокусов:

5) Уравнения директрис: (левая), (правая).

Чертеж построен (рис. 2.19).

Пример:

Составить уравнение эллипса, симметричного относительно координатных осей, проходящего через точку А(—3, 1,75) и имеющего эксцентриситет= 0,75.

Решение:

Имеем систему уравнений относительно параметров а, b, с =

(эллипс проходит через точку А),

или (дан эксцентриситет).

Из второго уравнения находим:

Подставляя это в первое уравнение, получим а тогда
Уравнение эллипса

Пример:

Составить уравнение эллипса с центром в начале координат и фокусами на оси Ох, если его эксцентриситет равен , а прямая, проходящая через его левый фокус и точку , образует с осью Ох угол .

Решение:

1) Сделаем чертеж (рис. 2.20).

2) Каноническое уравнение искомого эллипса есть и

задача сводится к нахождению параметров а и b.

3) Вспомним, что

Как видно, достаточно найти с. Составим уравнение прямой

С другой стороны, по определению, угловой коэффициент прямой есть тангенс угла наклона прямой к оси Ox, Значит,

По найденному значению с определим

Пример:

Записать в прямоугольных координатах полярное

Решение:

Сначала перепишем данное уравнение в виде и воспользуемся формулами (заменами)Получаем: Далее, возведя сначала это равенство в квадрат, после преобразований и выделения полного квадрата получаем:

Получили каноническое уравнение эллипса с центром в точкеи полуосями

Гипербола

1°. Гиперболой называется ГМТ, для которых модуль разности расстояний до двух фиксированных точек, называемых фокусами, есть величина постоянная. (Данная величина меньше расстояния между фокусами.)

2°. Если фокусы гиперболы расположены в точках а данная величина равна 2а, то такая гипербола имеет каноническое уравнение

где

При этом а — действительная полуось, b — мнимая полуось — фокусное расстояние (рис. 2.21).

3°. Прямые с уравнениями , называются асимптотами гиперболы. Величина называется эксцентриситетом гиперболы (при больших ветви гиперболы широкие, почти вертикальные, а при ветви гиперболы узкие, гипербола приближается к оси Ox).

Расстояния от точки М(х, у) гиперболы до ее фокусов ( от левого, от правого) равны:

Прямые с уравнениями называются директрисами гиперболы.

Примеры с решениями

Пример:

На гиперболе с уравнением найти

точку М, такую, что . Составить уравнения асимптот и директрис гиперболы. Найти ее эксцентриситет. Сделать чертеж.

Решение:

1) Имеем а = 4, b = 3, с = 5. Гиперболу строим так (рис. 2.22): в прямоугольнике со сторонами (т.е. ) проводим диагонали (это асимптоты гиперболы, т.е. прямые у нас ).

Ветви гиперболы проходят через точки (4,0), (-4,0), приближаясь к асимптотам, создавая впечатление почти параллельных линий. Фокусы считаются лежащими внутри гиперболы.

2) Имеем Искомую точку М(х, у) определим при помощи формулы или

Находим

Поскольку М<х, у) лежит на гиперболе ординаты соответствующих точек найдем из этого уравнения при найденных значениях x: и если то у

a если то

(это число не существует в нужном нам смысле)

Получили две точки, удовлетворяющие данным условиям,

3) Уравнения директрис данной гиперболы:

Пример:

На гиперболе найти точку М(х, у), такую, что ее расстояние до одной асимптоты в три раза больше, чем расстояние до другой асимптоты.

Решение:

1) Сделаем символический чертеж гиперболы (рис. 2.22) и ее асимптот. На нем изображены две различные возможные ситуации, удовлетворяющие условиям задачи: расстояние от точки М до асимптоты в три раза больше, чем расстояние до асимптоты для точки — наоборот.

2) Уравнения асимптот:

3) Для точки имеем По соответствующим формулам это равенство можно переписать в виде

4) Так как лежит на гиперболе, то нам надо решить еще
системы

Из первой находим что соответствует двум точкам

Вторая система решений не имеет.

5) Что касается координат точки М, то предлагаем убедиться самостоятельно в том, что

Пример:

Определить координаты точки пересечения двух взаимно перпендикулярных прямых, проходящих через фокусы гиперболы если известно, что точка A(6,-2) лежит на прямой, проходящей через ее правый фокус.

Решение:

1) Сделаем чертеж (рис. 2.24) и выпишем параметры гиперболы. Имеем а = 4, b = 3, с = 5, Переходим к вычислениям.

2) Составим уравнение по двум точкам:

3) Составим уравнение прямой проходящей через перпендикулярно прямой Имеем а тогда Получаем

4) Координаты точки М получаются как решение системы

Парабола

Параболой называется ГМТ, для которых расстояние до фиксированной точки, называемой фокусом, равно расстоянию до фиксированной прямой, называемой директрисой. Если фокус параболы расположен в точке а директриса имеет уравнение то такая парабола имеет каноническое уравнение При этом р называется параметром параболы. Расстояние от точки М(х, у) параболы до фокуса F равно (рис. 2.25).

Примеры с решениями

Пример:

Составить уравнение параболы, симметричной относительно оси Оу, если она проходит через точки пересечения прямой ху = 0 и окружности

Решение:

Уравнение искомой параболы должно иметь вид она изображена на рис. 2.26. Найдем точки пересечения данных прямой и окружности:

Получили .Так как точка лежит на параболе, то справедливо равенство и искомое уравнение параболы есть х2 = 3у.

Пример:

Составить уравнение параболы, симметричной относительно оси Ох, с вершиной в начале координат, если известно, что парабола проходит через точку А(2,2).

Найти длину хорды, проходящей через точку М(8,0) и наклоненной к оси Ох под углом 60°.

Решение:

1) Сделаем чертеж (рис. 2.27).

2) Каноническое уравнение такой параболы имеет вид . Неизвестный параметр р определим из условия прохождения параболы через точку A(2,2):

Итак, уравнение параболы

3) Найдем координаты точек точки лежат на параболе, поэтому Из прямоугольных треугольников имеем соответственно:Итак, неизвестные координаты точек удовлетворяют системам

решив которые, найдем Искомая длина хорды

Ответ.

Пример:

Уравнение параболы записать в полярных координатах.

Решение:

Подставляем в данное уравнение

При получаем или

Приведение общего уравнения кривой второго порядка к каноническому виду

1°. Даны две прямоугольные системы координат со свойствами (рис. 2.28): оси Ох и , а также Оу и параллельны и одинаково направлены, а начало системы имеет известные координаты относительно системы Оху.

Тогда координаты (х,у) и произвольной точки М плоскости связаны соотношениями:

Формулы (3) называются формулами преобразования координат при параллельном переносе осей координат.

2°. Предположим, что прямоугольные системы координат имеют общее начало, а ось составляет с осью Ох угол (под понимается угол поворота оси относительно Ох). Тогда

координаты (х, у) и произвольной точки М плоскости связаны соотношениями (рис. 2.29):

Формулы (4) называются формулами преобразования координат при повороте осей координат.

3°. Общее уравнение второго порядка относительно переменных х и у имеет вид

Существует угол , такой что формулами поворота осей на уголуравнение (5) можно привести к виду (в нем коэффициент при равен нулю)

Соответствующий угол можно найти из уравнения

4°. Уравнение (6) приводится к каноническому виду при помощи формул параллельного переноса.

Заметим, что окончательное уравнение может и не иметь геометрического изображения, что подтверждает, например, уравнение х2 + у2 + 1 = 0.

Примеры с решениями

Пример:

Привести к каноническому виду следующие уравнения второго порядка:

Построить геометрическое изображение каждого уравнения. Решение. 1) Этот пример решим достаточно подробно, не прибегая к формулам (7) и (8).

а) Выполним поворот осей координат на угол при помощи первых формул (4). Имеем последовательно

б) Выделим отдельно слагаемые, содержащие произведение :

Ставим условие, чтобы это выражение было тождественно равно нулю. Это возможно при условии

находим . Выберем угол так, что . Это соответствует тому, что ось составляет с осью Ох положительный угол . Из равенства находим:

в) Подставим полученные выражения в последнее уравнение из п. а). Получаем последовательно (слагаемые, содержащие, опускаем — их вклад в уравнение равен нулю, чего добились в п. б):

г) В круглые скобки добавим надлежащие числа для получения полных квадратов. После вычитания соответствующих слагаемых приходим к равносильному уравнению

д) Для приведения этого уравнения к каноническому виду воспользуемся формулами параллельного сдвига, полагая

и последующего почленного деления уравнения на 36. Получаем каноническое уравнение эллипса в системе координат (рис. 2.30).

2) Этот пример решим, используя формулы (7) и уравнение (8). Имеем: А = 3, В = 5, С = 3, D = -2, Е = -14, F = -13. Уравнение (8)принимает вид откуда а = 45°,

По формулам (7) последовательно находим:

В системе координат исходное уравнение принимает вид

После выделения полных квадратов получаем

и почленно разделим на 4. Получаем каноническое уравнение гиперболы, изображенной на рис. 2.31.

3) Уравнение (8) в данном случае приводится к виду Принимаем По формулам (7) приходим к новому уравнению или Формулы параллельного переноса приводят к каноническому уравнению параболы (рис. 2.32). 15

4) Для приведения этого уравнения к каноническому виду достаточно составить полные квадраты:

Получили уравнение окружности радиуса с центром в точке (рис. 2.33).
5) Соответствующее уравнение (8) имеет вид тогда

Коэффициенты нового уравнения равны: Само уравнение имеет вид и геометрического изображения не имеет. Оно выражает мнимый эллипс

Система координат на плоскости

Под системой координат на плоскости понимают способ, позволяющий численно описать положение точки плоскости. Одной из таких систем является прямоугольная (декартова) система координат.

Прямоугольная система координат задается двумя взаимно перпендикулярными прямыми — осями, на каждой из которых выбрано положительное направление и задан единичный (масштабный) отрезок. Единицу масштаба обычно берут одинаковой для обеих осей. Эти оси называют осями координат, точку их пересечения О — началом координат. Одну из осей называют осью абсцисс (осью Ох), другую — осью ординат (осью Оу) (рис. 23).

На рисунках ось абсцисс обычно располагают горизонтально и направленной слева направо, а ось ординат — вертикально и направленной снизу вверх. Оси координат делят плоскость на четыре области — четверти (или квадранты).

Единичные векторы осей обозначают

Систему координат обозначают , а плоскость, в которой расположена система координат, называют координатной плоскостью.

Рассмотрим произвольную точку М плоскости Оху. Векторназывается радиусом-вектором точки М.

Координатами точки М в системе координат называются координаты радиуса-вектора . Если , то координаты точки М записывают так: М(х ,у), число х называется абсциссой точки М, уординатой точки М.

Эти два числа х к у полностью определяют положение точки на плоскости, а именно: каждой паре чисел x и у соответствует единственная точка М плоскости, и наоборот.

Способ определения положения точек с помощью чисел (координат) называется методом координат. Сущность метода координат на плоскости состоит в том, что всякой линии на ней, как правило, сопоставляется ее уравнение. Свойства этой линии изучаются путем исследования уравнения линии.

Другой практически важной системой координат является полярная система координат. Полярная система координат задается точкой О, называемой полюсом, лучом Ор, называемым полярной осью, и единичным вектором того же направления, что и луч Ор.

Возьмем на плоскости точку М, не совпадающую с О. Положение точки М определяется двумя числами: ее расстоянием r от полюса О и углом , образованным отрезком ОМ с полярной осью (отсчет углов ведется в направлении, противоположном движению часовой стрелки) (см. рис. 24).

Числа r и называются полярными координатами точки М, пишут , при этом г называют полярным радиусом, полярным углом.

Для получения всех точек плоскости достаточно полярный угол ограничить промежутком , а полярный радиус — . В этом случае каждой точке плоскости (кроме О) соответствует единственная пара чисел r и , и обратно.

Установим связь между прямоугольными и полярными координатами. Для этого совместим полюс О с началом координат системы Оху, а полярную ось — с положительной полуосью Ох. Пусть х и у — прямоугольные координаты точки М, а r и — ее полярные координаты.

Из рисунка 25 видно, что прямоугольные и полярные координаты точки М выражаются следующим образом:

Определяя величину , следует установить (по знакам х и у) четверть, в которой лежит искомый угол, и учитывать , что

Пример:

Дана точка . Найти полярные координаты точки М.

Решение:

Находим :

Отсюда . Но так кале точка М лежит в 3-й четверти, то Итак, полярные координаты точки есть

Основные приложения метода координат на плоскости

Расстояние между двумя точками

Требуется найти расстояние d между точками плоскости Оху.

Решение:

Искомое расстояние d равно длине вектора . Т. е.

Деление отрезка в данном отношении

Требуется разделить отрезок АВ, соединяющий точки в заданном отношении , т. е. найти координаты точки М(х ; у) отрезка АВ такой, что (СМ. рис. 26).

Решение:

Введем в рассмотрение векторы . Точка М делит отрезок АВ в отношении , если

Уравнение (9.1) принимает вид

Учитывая, что равные векторы имеют равные координаты, получаем

Формулы (9.2) и (9.3) называются формулами деления отрезка в данном отношении. В частности, при , т. е. если AM = MB, то они примут вид . В этом случае точка М(х;у) является серединой отрезка АВ.

Замечание:

Если , то это означает, что точки А и М совпадают, если , то точка М лежит вне отрезка АВ— говорят, что точка М делит отрезок АВ внешним образом (, т. к. в противном случае , т. е. AM + MB = 0, т. е. АВ = 0).

Площадь треугольника

Требуется найти площадь треугольника ABC с вершинами

Решение:

Опустим из вершин А, В, С перпендикуляры на ось Ох (см. рис. 27). Очевидно, что

Замечание: Если при вычислении площади треугольника получим S = 0, то это означает, что точки А, В, С лежат на одной прямой, если же получим отрицательное число, то следует взять его модуль.

Преобразование системы координат

Переход от одной системы координат в какую-либо другую называется преобразованием системы координат.

Рассмотрим два случая преобразования одной прямоугольной системы координат в другую. Полученные формулы устанавливают зависимость между координатами произвольной точки плоскости в разных системах координат.

Параллельный перенос осей координат

Пусть на плоскости задана прямоугольная система координат Оху. Под параллельным переносом осей координат понимают переход от системы координат Оху к новой системе , при котором меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Пусть начало новой системы координат точка имеет координаты ) в старой системе координат Оху, т. е.— Обозначим координаты произвольной точки М плоскости в системе Оху через (х; у), а в новой системе через (см. рис. 28).

Так как т. е.

Полученные формулы позволяют находить старые координаты х и у по известным новым х’ и у‘ и наоборот.

Поворот осей координат

Под поворотом осей координат понимают такое преобразование координат, при котором обе оси поворачиваются на один и тот же угол, а начало координат и масштаб остаются неизменными.

Пусть новая система получена поворотом системы Оху на угол (см. рис. 29).

Пусть М — произвольная точка плоскости, (х; у) — ее координаты в старой системе и (х’; у’) — в новой системе.

Введем две полярные системы координат с общим полюсом О и полярными осями (масштаб одинаков). Полярный радиус r в обеих системах одинаков, а полярные углы соответственно равны , где — полярный угол в новой полярной системе.

По формулам перехода от полярных координат к прямоугольным имеем

Но . Поэтому

Полученные формулы называются формулами поворота осей. Они позволяют определять старые координаты (x; у) произвольной точки М через новые координаты (х’;у’) этой же точки М, и наоборот.

Если новая система координат получена из старой Оху путем параллельного переноса осей координат и последующим поворотом осей на угол (см. рис. 30), то путем введения вспомогательной системы легко получить формулы

выражающие старые координаты х и у произвольной точки через ее новые координаты х’ и у’.

Линии на плоскости

Линия на плоскости часто задается как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять положение точки плоскости заданием двух чисел — ее координат, а положение линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x; у) = 0 с двумя переменными, которому удовлетворяют координаты х и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии. Переменные х и у в уравнении линии называются текущими координатами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбранной системе координат.

Пример:

Лежат ли точки К(-2;1) и L(1; 1) на линии 2х + у + 3 = 0?

Решение:

Подставив в уравнение вместо х и у координаты точки К, получим 2 • (-2) + 1 + 3 = 0. Следовательно, точка К лежит на данной линии. Точка L не лежит на данной линии, т. к.

Задача о нахождении точек пересечения двух линий, заданных уравнениями , сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение называется уравнением данной линии в полярной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где х и у — координаты произвольной точки М(х; у), лежащей на данной линии, a t — переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если , то значению параметра t = 2 соответствует на плоскости точка (3; 4), т. к.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим, а уравнения (10.1) — параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x; у) = 0, надо каким-либо способом из двух уравнений исключить параметр t. Например, от уравнений путем подстановки t = х во второе уравнение, легко получить уравнение ; или , т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда целесообразен и не всегда возможен.

Линию на плоскости можно задать векторным уравнением , где t — скалярный переменный параметр. Каждому значению соответствует определенный вектор плоскости. При изменении параметра t конец вектора опишет некоторую линию (см. рис. 31).

Векторному уравнению линии в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения.

Векторное уравнение и параметрические уравнения линии имеют механический смысл. Если точка перемешается на плоскости, то указанные уравнения называются уравнениями движения, а линия — траекторией точки, параметр t при этом есть время.

Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, некоторая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению соответствует не линия, а точка (2; 3); уравнению на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение; вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

Параметрические уравнения циклоиды имеют вид Циклоида — это кривая, которую описывает фиксированная точка окружности, катящаяся без скольжения по неподвижной прямой.

Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды ее уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки пересечения с осью Оу и углом а между осью Ох и прямой (см. рис. 41).

Под углом наклона прямой понимается наименьший угол, на который нужно повернуть вокруг точки пересечения прямой и оси Ох против часовой стрелки ось Ох до ее совпадения с прямой.

Возьмем на прямой произвольную точку М(х;у) (см. рис. 41). Проведем через точку N ось Nx’, параллельную оси Ох и одинаково с ней направленную. Угол между осью Nx’ и прямой равен а. В системе Nx’y точка М имеет координаты х и уb. Из определения тангенса угла следует равенство Введем обозначение получаем уравнение

которому удовлетворяют координаты любой точки М(х ; у) прямой. Можно убедиться, что координаты любой точки Р<х; у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число называется угловым коэффициентом прямой, а уравнение (10.2) — уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b=0 и, следовательно, уравнение этой прямой будет иметь вид у =kх.

Если прямая параллельна оси Ох, то , следовательно, и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то уравнение (10.2) теряет смысл, т.к. для нее угловой коэффициент не существует. В этом случае уравнение прямой будет иметь вид

где а — абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой

Рассмотрим уравнение первой степени относительно х и у в общем виде

где А, В, С — произвольные числа, причем А и В не равны нулю одновременно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возможны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = 0, причем Это есть уравнение прямой, параллельной оси Оу и проходящей через точку .

Если , то из уравнения (10.4) получаем . Это есть уравнение прямой с угловым коэффициентом

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой.

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем Ах+By = 0. Уравнению удовлетворяют координаты точки O(0; 0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку и ее направление характеризуется угловым коэффициентом k. Уравнение этой прямой можно записать в виде у = kх + b, где b — пока неизвестная величина. Так как прямая проходит через точку , то координаты точки удовлетворяют уравнению прямой: . Отсюда ..

Подставляя значение b в уравнение у = kх + b, получим искомое уравнение прямой , т. е.

Уравнение (10.5) с различными значениями к называют также уравнениями пучка прямых с центром в точке . Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки Уравнение прямой, проходящей через точку , имеет вид
где k — пока неизвестный коэффициент.

Так как прямая проходит через точку то координаты этой точки должны удовлетворять уравнению (10.6):

Отсюда находим . Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки

Предполагается, что в этом уравнении Если , то прямая, проходящая через точки ,параллельна оси ординат. Ее уравнение имеет вид .

Если , то уравнение прямой может быть записано в виде , прямая параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке , а ось Оу — в точке (см. рис. 42). В этом случае уравнение (10.7) примет вид

Это уравнение называется уравнением прямой в отрезках, так как числа а и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку перпендикулярно данному ненулевому вектору .

Возьмем на прямой произвольную точку М(х ;у) и рассмотрим вектор (см. рис. 43). Поскольку векторы и перпендикулярны, то их скалярное произведение равно нулю: , то есть

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор , перпендикулярный прямой, называется нормальным вектором этой прямой.

Уравнение (10.8) можно переписать в виде

где А и В — координаты нормального вектора, — свободный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно определить, указав расстояние р от полюса О до данной прямой и угол между полярной осью ОР и осью l, проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки на данной прямой имеем:

С другой стороны,

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием р к (см. рис. 45). Рассмотрим прямоугольную систему координат Оху. Введем полярную систему, взяв О за полюс и Ох за полярную ось. Уравнение прямой можно записать в виде

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

Уравнение (10.11) называется нормальным уравнением прямой.

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель Получим Это уравнение должно обратиться в уравнение (10.11). Следовательно, должны выполняться равенства:

Из первых двух равенств находим

Множитель называется нормирующим множителем. Согласно третьему равенству знак нормирующего множителя противоположен знаку свободного члена С общего уравнения прямой.

Пример:

Привести уравнение -За; + 4у + 15 = 0 к нормальному виду.

Решение:

Находим нормирующий множитель .Умножая данное уравнение на , получим искомое нормальное уравнение прямой:

Прямая линия на плоскости. Основные задачи

Угол между двумя прямыми и условия параллельности и перпендикулярности двух прямых

Пусть прямые заданы уравнениями с угловыми коэффициентами (см. рис. 46).

Требуется найти угол , на который надо повернуть в положительном направлении прямую вокруг точки их пересечения до совпадения с прямой .

Решение: Имеем (теорема о внешнем угле треугольника) или . Если то

Ho поэтому

откуда легко получим величину искомого угла.

Если требуется вычислить острый угол между прямыми, не учитывая, какая прямая является первой, какая — второй, то правая часть формулы (10.12) берется по модулю, т. е.

Если прямые параллельны, то Из формулы (10.12) следует . И обратно, если прямые таковы, что т. е. прямые параллельны. Следовательно, условием параллельности двух прямых является равенство их угловых коэффициентов:

Если прямые перпендикулярны, то Следовательно, Отсюда (или ). Справедливо и обратное утверждение. Таким образом, условием перпендикулярности прямых является равенство .

Расстояние от точки до прямой

Пусть заданы прямая L уравнением Ах + By + С = 0 и точка (см. рис. 47). Требуется найти расстояние от точки до прямой L.

Решение:

Расстояние d от точки до прямой L равно модулю проекции вектора , где — произвольная точка прямой L, на направление нормального вектора . Следовательно,

Так как точка принадлежит прямой L, то , т. е. . Поэтому

что и требовалось получить.
Пример:

Найти расстояние от точки до прямой Зх + 4у — 22 = 0.

Решение:

По формуле (10.13) получаем

Линии второго порядка на плоскости

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

Коэффициенты уравнения — действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.

Окружность

Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке называется множество всех точек М плоскости, удовлетворяющих условию Пусть точка в прямоугольной системе координат Оху имеет координаты , а М(х ;у) — произвольная точка окружности (см. рис. 48).

Тогда из условия получаем уравнение

Уравнению (11.2) удовлетворяют координаты любой точки

М(х;у) данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.

Уравнение (11.2) называется каноническим уравнением окружности. В частности, полагая , получим уравнение окружности с центром в начале координат .

Уравнение окружности (11.2) после несложных преобразований примет вид . При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

  1. коэффициенты при равны между собой;
  2. отсутствует член, содержащий произведение ху текущих координат.

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения , получим

Преобразуем это уравнение:

Отсюда следует, что уравнение (11.3) определяет окружность при условии Ее центр находится в точке , радиус

Если же то уравнение (11-3) имеет вид

Ему удовлетворяют координаты единственной точки . В этом случав говорят: «окружность выродилась в точку» (имеет нулевой радиус).

Если , то уравнение (11-4), а следовательно, и равносильное уравнение (11.3), не определяет никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая часть — не отрицательна (говорят: «окружность мнимая»).

Эллипс

Каноническое уравнение эллипса

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы через , расстояние между ними через , а сумму расстояний от произвольной точки эллипса до фокусов — через (см. рис. 49). По определению 2а > 2с, т. е. а > с.

Для вывода уравнения эллипса выберем систему координат Оху так, чтобы фокусы лежали на оси Ох, а начало координат совпадало с серединой отрезка . Тогда фокусы будут иметь следующие координаты: .

Пусть М(х ;у) — произвольная точка эллипса. Тогда, согласно определению эллипса, , т. е.

Это, по сути, и есть уравнение эллипса.

Преобразуем уравнение (11.5) к более простому виду следующим образом:

Так как а > с, то . Положим

Тогда последнее уравнение примет вид или

Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническим уравнением эллипса.

Эллипс — кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, пользуясь его каноническим уравнением. 1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка (х; у) принадлежит эллипсу, то ему также принадлежат точки . Отсюда следует, что эллипс симметричен относительно осей Ох и Оу, а также относительно точки 0(0; 0), которую называют центром эллипса.

2.Найдем точки пересечения эллипса с осями координат. Положив у = 0, находим две точки , в которых ось Ох пересекает эллипс (см. рис. 50). Положив в уравнении (11.7) х = 0, находим точки пересечения эллипса с осью Оу: . Точки называются вершинами эллипса. Отрезки и

, а также их длины и 2b называются соответственно большой и малой осями эллипса. Числа а и b называются соответственно большой и малой полуосями эллипса.

3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т. е. имеют место неравенства или . Следовательно, все точки эллипса лежат внутри прямоугольника, образованного прямыми

4. В уравнении (11.7) сумма неотрицательных слагаемых равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т. е. если |х| возрастает, то |у| уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения . При b = а эллипс превращается в окружность, уравнение эллипса (11.7) принимает вид . В качестве характеристики формы эллипса чаще пользуются отношением .

Отношение половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и обозначается буквой («эпсилон»):

причем , так как 0

Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить , то эллипс превращается в окружность.

Пусть М(х , у) — произвольная точка эллипса с фокусами (см. рис. 51). Длины отрезков называются фокальными радиусами точки М. Очевидно,

Имеют место формулы

Прямые называются директрисами эллипса. Значение директрисы эллипса выявляется следующим утверждением.

Теорема:

Если r — расстояние от произвольной точки эллипса до какого-нибудь фокуса, d — расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса: .

Из равенства (11.6) следует, что а > b. Если же а Гипербола

Каноническое уравнение гиперболы

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, меньшая, чем расстояние между фокусами.

Обозначим фокусы через , расстояние между ними через , а модуль разности расстояний от каждой точки гиперболы до фокусов через . По определению

Гипербола есть линия второго порядка.

Исследование формы гиперболы по ее уравнению

Установим форму гиперболы, пользуясь ее каконическим уравнением. 1. Уравнение (11.9) содержит х и у только в четных степенях. Следовательно, гипербола симметрична относительно осей Ох и Оу, а также относительно точки 0(0;0), которую называют центром гиперболы.

2.Найдем точки пересечения гиперболы с осями координат. Положив у = 0 в уравнении (11.9), находим две точки пересечения гиперболы с осью Ox:. Положив х = 0 в (11.9), получаем , чего быть не может. Следовательно, гипербола ось Оу не пересекает.

Точки называются вершинами гиперболы, а отрезок действительной осью, отрезок действительной полуосью гиперболы.

Отрезок , соединяющий точки называется мнимой осью, число bмнимой полуосью. Прямоугольник со сторонами 2а и 2b называется основным прямоугольником гиперболы.

3.Из уравнения (11.9) следует, что уменьшаемое не меньше eдиницы, т. е. что . Это означает, что точки гиперболы расположены справа от прямой х = а (правая ветвь гиперболы) и слева от прямой х = -а (левая ветвь гиперболы).

4. Из уравнения (11.9) гиперболы видно, что когда |x| возрастает, то и |y| возрастает. Это следует из того, что разность сохраняет постоянное значение, равное единице.

Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).

Асимптоты гиперболы

Прямая L называется асимптотой неограниченной кривой К, если расстояние d от точки М кривой К до этой прямой стремится к нулю при неограниченном удалении точки М вдоль кривой К от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.

Покажем, что гипербола имеет две асимптоты:

Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.

Возьмем на прямой точку N имеющей ту же абсциссу х, что и точка М(х ;у) на гиперболе (см. рис. 56), и найдем разность MN между ординатами прямой и ветви гиперболы:

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель — есть постоянная величина. Стало быть, длина отрезка MN стремится к нулю. Так как МN больше расстояния d от точки М до прямой, то d и подавно стремится к нулю. Итак, прямые является асимптотами гиперболы (11.9).

При построении гиперболы (11.9) целесообразно сначала построить основной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, — асимптоты гиперболы и отметить вершины гиперболы.

Уравнение равносторонней гиперболы, асимптотами которой служат оси координат

Гипербола (11.9) называется равносторонней, если ее полуоси равны (а = b ). Ее каноническое уравнение

Асимптоты равносторонней гиперболы имеют уравнения у = х и у = -х и, следовательно, являются биссектрисами координатных углов. Рассмотрим уравнение этой гиперболы в новой системе координат (см. рис. 58), полученной из старой поворотом осей координат

на угол . Используем формулы поворота осей координат (их вывод показан на с. 63):

Подставляем значения х и у в уравнение (11.12):

где

Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид .

Дополнительные сведения о гиперболе

Эксцентриситетом гиперболы (119) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается:

Так как для гиперболы с > а, то эксцентриситет гиперболы больше единицы: . Эксцентриситет характеризует форму гиперболы. Действительно, из равенства (11.10) следует, что , т. е.

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен . Действительно,

Фокальные радиусы для точек правой ветви гиперболы имеют вид , а для левой — .

Прямые называются директрисами гиперболы. Так как для гиперболы . Это значит, что правая директриса расположена между центром и правой вершиной гиперболы, левая — между центром и левой вершиной.

Директрисы гиперболы имеют то же свойство , что и директрисы эллипса.

Кривая, определяемая уравнением , также есть гипербола, действительная ось 2b которой расположена на оси Оу, а мнимая ось — на оси Оx. На рисунке 59 она изображена пунктиром.

Очевидно, что гиперболы От имеют общие асимптоты. Такие гиперболы называются сопряженными.

Парабола

Каноническое уравнение параболы

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через р (p > 0).

Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директрисой (см. рис. 60). В выбранной системе фокус F имеет координаты , а уравнение директрисы имеет вид , или.

Пусть М(х;у) — произвольная точка параболы. Соединим точку М с F. Проведем отрезок MN перпендикулярно директрисе. Согласно определению параболы MF = MN. По формуле расстояния между двумя точками находим:

Возведя обе части уравнения в квадрат, получим

Уравнение (11.13) называется каноническим уравнением параболы. Парабола есть линия второго порядка.

Исследование форм параболы по ее уравнению

  1. В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью симметрии параболы.
  2. Так как р > 0, то из (11.13) следует, что . Следовательно, парабола расположена справа от оси Оу.
  3. При х = 0 имеем у = 0. Следовательно, парабола проходит через начало координат.
  4. При неограниченном возрастании х модуль у также неограниченно возрастает. Парабола имеет вид (форму), изображенный на рисунке 61. Точка 0(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.

Уравнения