Как писать одз для логарифмических уравнений

ОДЗ — Область допустимых значений

Область допустимых значений (ОДЗ) – это все значения переменной, при которых не нарушаются правила математики.

— если в выражении \(\frac\) значение переменной будет равно 1, нарушается правило: на ноль делить нельзя. Поэтому здесь \(x\) не может быть единицей и ОДЗ записывается так: \(x\neq1\);

— если в выражении \(\sqrt\) значение переменной равно \(0\), нарушается правило: подкоренное выражение не должно быть отрицательно. Значит, здесь \(x\) не может быть \(0\), а также \(1, -3, -52,7\) и т.д. То есть, икс должен быть больше или равен 2 и ОДЗ будет: \(x\geq2\);

— а вот в выражение \(4x+1\) мы можем подставить любое число вместо икса, и никакие правила нарушены не будут. Поэтому область допустимых значений здесь — вся числовая ось. В таких случаях ОДЗ не записывают, потому что оно не несет в себе полезной информации.

Как найти ОДЗ?

Если переменная (икс) в уравнении или неравенстве стоит в знаменателе, логарифме, под корнем, в тангенсе или котангенсе ОДЗ записать нужно.

Чтобы осознать важность ОДЗ, давайте сравним два решения уравнения: с ОДЗ и без ОДЗ.

Без ОДЗ:С ОДЗ:
\(\frac=\frac<12>\)\(\frac=\frac<12>\)
ОДЗ: \(x+3≠0\) \(⇔\) \(x≠-3\)
\(x^2-x=12\)\(x^2-x=12\)
\(x^2-x-12=0\)\(x^2-x-12=0\)
\(D=(-1)^2-4·1·(-12)=49\)\(D=(-1)^2-4·1·(-12)=49\)
\(x_1=\) \(\frac<-(-1) + \sqrt<49>><2·1>\) \(=4\)\(x_2=\) \(\frac<-(-1) + \sqrt<49>><2·1>\) \(=4\)
\(x_1=\) \(\frac<-(-1) - \sqrt<49>><2·1>\) \(=-3\)\(x_2=\) \(\frac<-(-1) - \sqrt<49>><2·1>\) \(=-3\) — не подходит под ОДЗ
Ответ: \(4; -3\)Ответ: \(4\)

Видите разницу? В первом решении у нас в ответе появился неверный, лишний корень ! Почему неверный? А давайте попробуем подставить его в исходное уравнение.

Видите, у нас получились и слева, и справа невычислимые, бессмысленные выражения (ведь на ноль делить нельзя). И то, что они одинаковы уже не играет роли, поскольку эти значения — не существуют. Таким образом, «\(-3\)» – неподходящий, посторонний корень, а область допустимых значений оберегает нас от таких серьезных ошибок.

Именно поэтому за первое решение вы получите двойку, а за второе – пятерку. И это не занудные придирки учителя, ведь неучет одз – не мелочь, а вполне конкретная ошибка, такая же как потерянный знак или применение не той формулы. В конце концов, итоговый ответ-то неверен!

Нахождение области допустимых значений часто приводит к необходимости решать системы неравенств или уравнений, поэтому вы должны уметь это делать хорошо.

Решение: В выражении два корня, один из которых в знаменателе. Кто не помнит ограничения, накладывающиеся в этом случае, тот смотрит таблицу . Кто помнит, записывает, что выражение под первым корнем больше или равно нулю, а под вторым — больше нуля. Понимаете, почему ограничения именно такие?

Дело за малым, нужно решить систему неравенств.
В первом неравенстве перенесем \(5\) вправо, второе умножим на \(-1\)

Запишем общий ответ для системы – это и есть допустимые значения для икса.

ОДЗ логарифма

ОДЗ логарифма следует непосредственно из определения логарифма.

По определению, логарифм — это показатель степени, в которую надо возвести основание, чтобы получить число знаком логарифма:

Основание степени должно быть положительным числом, отличным от единицы.

При возведении в любую степень такого числа всегда получается положительное число.

Таким образом, область допустимых значений логарифма (ОДЗ логарифма)

состоит из трёх условий:

1) Под знаком логарифма должно стоять положительное число:

0;\]» title=»Rendered by QuickLaTeX.com»/>

2-3) В основании логарифма должно стоять положительное число, отличное от единицы:

0;\]» title=»Rendered by QuickLaTeX.com»/>

Все три условия должны быть выполнены одновременно.

Таким образом, чтобы найти ОДЗ логарифма

надо решить систему из трёх неравенств:

0;\\ g(x) > 0;\\ g(x) \ne 1. \end \right.\]» title=»Rendered by QuickLaTeX.com»/>

Если в основании логарифма стоит число:

ОДЗ логарифма содержит всего одно условие:

0.\]» title=»Rendered by QuickLaTeX.com»/>

Если под знаком логарифма стоит число, а в основании — выражение с переменной:

то в область допустимых значений нужно записать два условия:

0;\\ g(x) \ne 1 \end \right.\]» title=»Rendered by QuickLaTeX.com»/>

Примеры нахождения ОДЗ логарифма рассмотрим отдельно.

«Некоторые методы решения логарифмических уравнений»

Разделы: Математика

Некоторые методы решения логарифмических уравнений.

Настоящая статья содержит систематическое изложение методов решения логарифмических уравнений с одной переменной. Это поможет учителю, прежде всего в дидактическом смысле: подбор упражнений позволяет составить для учащихся индивидуальные задания с учетом их возможностей. Данные упражнения могут быть использованы для урока обобщения и для подготовки к ЕГЭ.
Краткие теоретические сведения и решения задач позволяют учащимся самостоятельно развивать умения и навыки решения логарифмических уравнений.

Решение логарифмических уравнений.

Логарифмические уравнения – уравнения, содержащие неизвестное под знаком логарифма. При решении логарифмических уравнений часто используются теоретические сведения:

Обычно решение логарифмических уравнений начинается с определения ОДЗ. В логарифмических уравнениях рекомендуется все логарифмы преобразовать так, чтобы их основания были равны. Затем уравнения либо выражают через один какой – либо логарифм, который обозначается новой переменной, либо уравнение преобразовывают к виду, удобному для потенцирования.
Преобразования логарифмических выражений не должны приводить к сужению ОДЗ, если же примененный метод решения сужает ОДЗ, выпуская из рассмотрения отдельные числа, то эти числа в конце задачи необходимо проверить подстановкой в исходное уравнение, т.к. при сужении ОДЗ возможна потеря корней.

1. Уравнения вида – выражение, содержащее неизвестное число, а число .
Для решения таких уравнений надо:

1) воспользоваться определением логарифма: ;
2) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
Если ) .

2. Уравнения первой степени относительно логарифма, при решении которых используются свойства логарифмов.

Для решения таких уравнений надо:

1) используя свойства логарифмов, преобразовать уравнение;
2) решить полученное уравнение;
3) сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).
).

3. Уравнение второй и выше степени относительно логарифма.

Для решения таких уравнений надо:

  1. сделать замену переменной;
  2. решить полученное уравнение;
  3. сделать обратную замену;
  4. решить полученное уравнение;
  5. сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им корни (решения).

4.Уравнения, содержащие неизвестное в основании и в показателе степени.

Для решения таких уравнений надо:

  1. прологарифмировать уравнение;
  2. решить полученное уравнение;
  3. сделать проверку или найти область допустимых значений для неизвестного числа и отобрать соответствующие им
    корни (решения).

5. Уравнения, которые не имеют решения.

  1. Для решения таких уравнений надо найти ОДЗ уравнения.
  2. Проанализировать левую и правую часть уравнения.
  3. Сделать соответствующие выводы.

Исходное уравнение равносильно системе:

Доказать, что уравнение не имеет решения.

ОДЗ уравнения определяется неравенством х ≥ 0. На ОДЗ имеем

Сумма положительного числа и неотрицательного числа не равна нулю, поэтому исходное уравнение решений не имеет.

Ответ : решений нет.

В ОДЗ попадает только один корень х = 0. Ответ: 0.

Произведем обратную замену.

Найденные корни принадлежат ОДЗ.

ОДЗ уравнения – множество всех положительных чисел.

Аналогично решаются данные уравнения:

Задачи для самостоятельного решения:

Используемая литература.

  1. Бесчетнов В.М. Математика. Москва Демиург 1994
  2. Бородуля И.Т. Показательная и логарифмическая функции. ( задачи и упражнения). Москва «Просвещение» 1984
  3. Вавилов В.В., Мельников И.И., Олехник С.Н., Пасиченко П.И. Задачи по математике. Уравнения и неравенства. Москва «Наука» 1987
  4. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер. Москва «Илекса»2007
  5. Саакян С.М., Гольдман А.М., Денисов Д.В.. Задачи по алгебре и началам анализа. Москва «Просвещение» 2003


источники:

http://www.logarifmy.ru/odz-logarifma/

http://urok.1sept.ru/articles/569266

\(\begin5-2x\geq0\\14+5x-x^ <2>> 0\end\)