Контрольная работа по дифференциальным уравнениям 5 вариант

Контрольные по дифференциальным уравнениям:
примеры оформления

Ниже представлены некоторые работы по дифференциальным уравнениям, выполненные в МатБюро. Оформляем подробно: назван тип уравнения, комментируется ход решения, выписываются все интегралы, находится общее решение/интеграл или решение задачи Коши.

  • Контрольная по дифференциальным уравнениям 1
    Объем 15 страниц.
    Темы: ДУ первого порядка, линейные и нелинейные ДУ, однородные ДУ, ДУ 2-го порядка с постоянными коэффициентами, системы ДУ.
  • Контрольная по дифференциальным уравнениям 2
    Объем 5 страниц.
    Темы: ДУ высшего порядка, определитель Вронского.

Контрольная работа № 5 Дифференциальные уравнения второго порядка с постоянными коэффициентами

Контрольная работа № 5

Дифференциальные уравнения второго порядка с постоянными коэффициентами.

1.1. Однородное дифференциальное уравнение второго порядка с постоянными коэффициентами.

2. Найти частное решение

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

5. Найти частное решение

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

7. Найти частное решение

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

Найдем

С учетом начальных условий получим систему:

Тогда частное решение исходного уравнения примет вид:

1.2. Неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами.

2. Найти частные решения, удовлетворяющие начальным условиям.

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Приравниваем коэффициенты при одинаковых степенях:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

5. Найти частные решения, удовлетворяющие начальным условиям.

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Приравниваем коэффициенты при одинаковых степенях:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

7. Найти частные решения, удовлетворяющие начальным условиям.

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

Искомое решение имеет вид:

Составим характеристическое уравнение:

Его корни равны:

Следовательно, общее решение имеет вид:

выберем в виде:

И подставляем в левую часть уравнения:

Приравниваем коэффициенты при одинаковых степенях:

Следовательно, общее решение неоднородного уравнения:

Найдем :

И подставим в начальные условия:

Тогда частное решение окончательно примет вид:

Контрольная работа № 6

Ряды, их применение.

Раздел 1. Числовые ряды.

2. Выписать три первых члена и исследовать сходимость числовых рядов:

Используем признак Даламбера:

Т. к. предел меньше единицы, то ряд сходится.

Применим интегральный признак Коши:

Т. к. интеграл существует, то ряд сходится.

5. Выписать три первых члена и исследовать сходимость числовых рядов:

Используем признак Даламбера:

Т. к. предел меньше единицы, то ряд сходится.

Применим интегральный признак Коши:

Т. к. интеграл не существует, то ряд расходится.

7. Выписать три первых члена и исследовать сходимость числовых рядов:

Используем признак Даламбера:

Т. к. предел меньше единицы, то ряд сходится.

Применим интегральный признак Коши:

Т. к. интеграл существует, то ряд сходится.

Раздел 2. Степенные ряды.

2. Найти область сходимости и проверить сходимость на границах интервала:

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

5. Найти область сходимости и проверить сходимость на границах интервала:

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

7. Найти область сходимости и проверить сходимость на границах интервала:

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

Значит область сходимости

Проверим сходимость на правой границе интервала:

Значит, границы включаются в область сходимости

Раздел 3. Приложение степенных рядов.

3.1. Приближенное вычисление определенных интегралов.

2. Вычислить определенный интеграл с точностью до 0,001

5. Вычислить определенный интеграл с точностью до 0,001

7. Вычислить определенный интеграл с точностью до 0,001

3.2. Интегрирование дифференциальных уравнений с помощью рядов.

2. Найти три первых значащих члена разложения в степенной ряд решения дифференциального уравнения с заданным начальным условием:

Решение ищем в виде:

Необходимо найти 3 члена ряда отличных от нуля.

Из начального условия следует

Подставляем начальное условие в правую часть исходного уравнения:

Продифференцируем решение в виде ряда:

И так как

Продифференцируем левую и правую часть исходного уравнения:

С другой стороны,

Сравнивая значения

Таким образом, искомое решение в виде ряда имеет вид:

5. Найти три первых значащих члена разложения в степенной ряд решения дифференциального уравнения с заданным начальным условием:

Решение ищем в виде:

Необходимо найти 3 члена ряда отличных от нуля.

Из начального условия следует

Подставляем начальное условие в правую часть исходного уравнения:

Продифференцируем решение в виде ряда:

И так как

Продифференцируем левую и правую часть исходного уравнения:

С другой стороны,

Сравнивая значения

7. Найти три первых значащих члена разложения в степенной ряд решения дифференциального уравнения с заданным начальным условием:

Решение ищем в виде:

Необходимо найти 3 члена ряда отличных от нуля.

Из начального условия следует

Подставляем начальное условие в правую часть исходного уравнения:

Продифференцируем решение в виде ряда:

И так как

Продифференцируем левую и правую часть исходного уравнения:

С другой стороны,

Сравнивая значения

Таким образом, искомое решение в виде ряда имеет вид:

Контрольная работа.Варианты решения Дифференциальных уравнений (с решением).."

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

В А Р И А Н Т 1.

  1. Решить дифференциальное уравнение .[mnp1]

2. Найти частное решение дифференциального уравнения , [mnp2] удовлетворяющее начальному условию y (0)=2 .

  1. Найти частное решение дифференциального уравнения, удовлетворяющее начальному условию y (0)= ln 2 . Выполнить проверку[mnp3].

  1. Найти частное решение дифференциального уравнения ,

удовлетворяющее начальному условию и x =1 [mnp4] .

В А Р И А Н Т 2.

  1. Решить дифференциальное уравнение [mnp5]
  2. Решить дифференциальное уравнение [mnp6]
  1. Найти частное решение дифференциального уравнения, удовлетворяющее начальному условию y (1)=e . Выполнить проверку[mnp7].
  2. Найти частное решение дифференциального уравнения ,

удовлетворяющее начальному условию y (0)=1 [mnp8]

В А Р И А Н Т 3.

  1. Решить дифференциальное уравнение. Выполнить проверку[mnp9].
  2. Решить дифференциальное уравнение [mnp10]
  3. Решить дифференциальное уравнение .[mnp11]
  4. Найти частное решение дифференциального уравнения ,

удовлетворяющее начальному условию y(0)=1 [mnp12] .

В А Р И А Н Т 4.

1. Решить дифференциальное уравнение . Выполнить проверку [mnp13] .

2. Найти частное решение дифференциального уравнения ,

удовлетворяющее начальному условию y(1)=1 [mnp14] .

3. Найти частное решение дифференциального уравнения - 3) dt ,

удовлетворяющее начальному условию s (0)=0 [mnp15] .

4. Решить дифференциальное уравнение .

В А Р И А Н Т 1.

1. Решить дифференциальное уравнение .

1) перепи шем производную в другом виде :

2)

разделим переменные по частям уравнения :

3) произведем интегрирование дифференциального уравнения (которое сводится к взятию табличных интегралов):

получим решение уравнения в неявном виде:

5) попроб уем найти общее решение, то есть попыта ем ся представить функцию в явном виде ( представляя константу С тоже под знаком логарифм а):


[spoiler title="источники:"]

http://pandia.ru/text/80/265/42669.php

http://infourok.ru/kontrolnaya-rabota-varianty-resheniya-differencialnyh-uravnenij-s-resheniem-5636831.html

[/spoiler]