Контрольная работа решение дробных уравнений

Контрольная работа по алгебре в 8 классе на тему «Дробно — рациональные уравнения»

Контрольная работа содержит 4 варианта с подробным решением.

Просмотр содержимого документа
«Контрольная работа по алгебре в 8 классе на тему «Дробно — рациональные уравнения»»

В а р и а н т 1

1. Решите уравнение:

а) ; б) = 3.

2. Из пункта А в пункт В велосипедист проехал по одной дороге длиной 27 км, а обратно возвращался по другой дороге, которая была короче первой на 7 км. Хотя на обратном пути велосипедист уменьшил скорость на 3 км/ч, он все же на обратный путь затратил времени на 10 минут меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из А в В?

В а р и а н т 2

1. Решите уравнение:

а) ; б) = 2.

2. Катер прошёл 12 км против течения реки и 5 км по течению. При этом он затратил столько времени, сколько ему потребовалось бы, если бы он шёл 18 км по озеру. Какова собственная скорость катера, если известно, что скорость течения реки равна 3 км/ч.

В а р и а н т 3

1. Решите уравнение:

а) ; б) = 3.

2. Из пункта А в пункт В велосипедист проехал по дороге длиной 48 км, обратно он возвращался по другой дороге, которая короче первой на 8 км. Увеличив на обратном пути скорость на 4 км/ч, велосипедист затратил на 1 час меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из пункта А в пункт В?

В а р и а н т 4

1. Решите уравнение:

а) ; б) = 2.

2. Катер прошёл 15 км против течения и 6 км по течению, затратив на весь путь столько же времени, сколько ему потребовалось бы, если бы он шёл 22 км по озеру. Какова собственная скорость катера, если известно, что скорость течения реки равна 2 км/ч?

Решение вариантов контрольной работы

В а р и а н т 1

1. а) . Общий знаменатель х 2 – 9.

По теореме, обратной теореме Виета, х1 = 3; х2 = –4.

Если х = 3, то х 2 – 9 = 0.

Если х = –4, то х 2 – 9 ≠ 0.

б) = 3. Общий знаменатель х (х – 2).

D = (–17) 2 – 4 · 3 · 10 = 289 – 120 = 169, D 0, 2 корня.

x1 = = 5;

x2 = .

Если х = , то х (х – 2) ≠ 0.

О т в е т: а) –4; б) ; 5.

2. Пусть х км/ч – скорость велосипедиста, с которой он ехал из А в В, тогда (х – 3) км/ч – скорость, с которой он ехал обратно. На путь из А в В он затратил ч, а обратно ч. Зная, что на обратный путь он затратил на 10 мин ( часа) меньше, составим уравнение:

= . Общий знаменатель 6х (х – 3).

D = (–45) 2 – 4 · 486 = 81, D 0, 2 корня.

x1 = = 27;

x2 = = 18.

Ни один из корней не обращает знаменатель в нуль, но корень х = 27 не удовлетворяет условию задачи (слишком большая скорость для велосипедиста).

О т в е т: 18 км/ч.

В а р и а н т 2

1. а) . Общий знаменатель х 2 – 16.

По теореме, обратной теореме Виета х1 = 4; х2 = –1.

Если х = 4, то х 2 – 16 = 0.

Если х = – 1, то х 2 – 16 ≠ 0.

б) = 2. Общий знаменатель х (х – 5).

D = (–21) 2 – 4 · 2 · 40 = 441 – 320 = 121, D 0, 2 корня.

x1 = = 8;

О т в е т: а) –1; б) 2,5; 8.

2. Пусть х км/ч – собственная скорость катера, тогда против течения он шёл со скоростью (х – 3) км/ч, по течению – (х + 3) км/ч и по озеру – х км/ч. Против течения он шёл ч, по течению ч, а по озеру он шёл бы ч. Зная, что на все плавание по реке он затратил бы столько же времени, сколько на плавание по озеру, составим уравнение:

12х 2 + 36х + 5х 2 – 15х – 18х 2 + 162 = 0;

D = (–21) 2 – 4 · 162 = 441 + 648 = 1089, D 0, 2 корня.

Ни один из корней не обращает знаменатель в нуль, но х = –6 не удовлетворяет условию задачи.

О т в е т: 27 км/ч.

В а р и а н т 3

1. а) . Общий знаменатель х 2 – 1.

По теореме, обратной теореме Виета, х1 = 5; х2 = –1.

Если х = 5, то х 2 – 1 ≠ 0.

Если х = –1, то х 2 – 1 = 0.

б) = 3. Общий знаменатель х (х – 3).

По теореме, обратной теореме Виета, х1 = 4; х2 = –2.

О т в е т: а) 5; б) –2; 4.

2. Пусть х км/ч – скорость, с которой велосипедист ехал из А в В, тогда (х + 4) км/ч – скорость, с которой он ехал обратно. На путь из А в В он затратил ч, а обратно ч. Зная, что на обратный путь он затратил на 1 ч меньше, составим уравнение:

– = 1. Общий знаменатель х (х + 4).

Ни один из корней не обращает знаменатель в нуль, но корень х = –12 не удовлетворяет условию задачи.

О т в е т: 16 км/ч.

В а р и а н т 4

1. а) . Общий знаменатель х 2 – 4.

По теореме, обратной теореме Виета, х1 = 7; х2 = –2.

Если х = 7, то х 2 – 4 ≠ 0.

Если х = –2, то х 2 – 4 = 0.

б) = 2. Общий знаменатель х (х – 3).

По теореме, обратной теореме Виета, х1 = 5; х2 = –3.

О т в е т: а) 7; б) –3; 5.

2. Пусть х км/ч – собственная скорость катера, тогда против течения он шёл со скоростью (х – 2) км/ч, по течению – (х + 2) км/ч и по озеру – х км/ч. Против течения он шёл ч, по течению ч, а по озеру он шёл бы ч. Зная, что на все плавание по реке он затратил бы столько же времени, сколько на плавание по озеру, составим уравнение:

15х 2 + 30х + 6х 2 – 12х – 22х 2 + 88 = 0;

Ни один из корней не обращает знаменатель в нуль, но корень х = –4 не удовлетворяет условию задачи.

Контрольная работа по теме: «Дробные рациональные уравнения»
методическая разработка по алгебре (8 класс)

Материал для проведения контрольной работы по теме Дробные рациональные уравнения. Решение задач с помощью дробных рациональных уравнений»

Скачать:

ВложениеРазмер
kr_8_kl.docx39.95 КБ

Предварительный просмотр:

Контрольная работа по теме: «Дробные рациональные уравнения»

1. Решите уравнение:

а) : б) в) =

2.1) Из пункта А в пункт В велосипедист проехал по одной дороге длиной 27 км , а обратно возвращался по другой дороге, которая была короче первой на 7 км . Хотя на обратном пути велосипедист уменьшил скорость на 3 км / ч , он всё же на обратный путь затратил времени на 10 мин меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из А в В?

2.2) Имеется два сплава. Первый сплав содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

2. 3) Катер прошёл 12 км против течения реки и 5 км по течению. При этом он затратил столько времени, сколько ему потребовалось бы, если бы он шёл 18 км по озеру. Какова собственная скорость катера, если известно, что скорость течения реки равна 3 км / ч .

а) =0; б) = ; в) ;

2.1)Катер, собственная скорость которого 8 км/ч, прошел по реке расстояние, равное 15 км, по течению и такое же расстояние против течения. Найдите скорость течения реки, если время, затраченное на весь путь, равно 4 ч.

2.2) Первый сплав содержит 5% меди, второй — 14% меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 13% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

2.3) Из пункта А в пункт В велосипедист проехал по дороге длиной 48 км , обратно он возвращался по другой дороге, которая короче первой на 8 км . Увеличив на обратном пути скорость на 4 км / ч , велосипедист затратил на 1 ч меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из пункта А в пункт В.

1. Решите уравнение:

2.1)Катер прошёл 12 км против течения реки и 5 км по течению. При этом он затратил столько времени, сколько ему потребовалось бы, если бы он шёл 18 км по озеру. Какова собственная скорость катера, если известно, что скорость течения реки равна 3 км / ч .

2.2) Имеется два сплава. Первый сплав содержит 10% никеля, второй — 35% никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 30% никеля. На сколько килограммов масса первого сплава меньше массы второго?

1. Решите уравнение:

а) =0; б) = ; в) ;

2.1) Из пункта А в пункт В велосипедист проехал по дороге длиной 48 км , обратно он возвращался по другой дороге, которая короче первой на 8 км . Увеличив на обратном пути скорость на 4 км / ч , велосипедист затратил на 1 ч меньше, чем на путь из А в В. С какой скоростью ехал велосипедист из пункта А в пункт В.

2.2) Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Контрольная работа решение дробных уравнений

Цель: проверить знания, умения и навыки учащихся по теме.
Тип урока: урок контроля, оценки и коррекции знаний.

ХОД УРОКА

I. Сообщение темы и цели урока

II. Общая характеристика контрольной работы

Контрольная работа составлена в 6 вариантах различной сложности (варианты 1, 2 самые простые, варианты 3, 4 сложнее и варианты 5, 6 самые сложные). При этом сложность вариантов нарастает не очень резко. Каждый вариант содержит 6 задач примерно одинаковой сложности (может быть, несколько сложнее две последние задачи).

При проверке вариантов 1, 2 оценка «5» ставится за правильное решение пяти задач, оценка «4» — четырех задач и оценка «3» — трех задач. Одна задача является резервной (или запасной) и дает некоторую свободу выбора учащимся. При таких же критериях оценки за решение задач вариантов 3, 4 дается дополнительно 0,5 балла, вариантов 5, 6 — 1 балл (т. е. оценку «5» можно получить за правильное решение четырех задач).

III. Контрольная работа в 6 вариантах

IV. Подведение итогов контрольной работы

  1. Распределение работ по вариантам и результаты решения. Данные о результатах работы удобно заносить в таблицу (для каждой пары вариантов).

Обозначения:
+ (число решивших задачу правильно или почти правильно);
± (число решивших задачу со значительными погрешностями);
– (число не решивших задачу);
∅ (число не решавших задачу).

  1. Типичные ошибки, возникшие при решении задач.
  2. Наиболее трудные задачи и их разбор (учителем или школьниками, решившими их).
  3. Разбор всей контрольной работы (вывесить на стенде ответы к заданиям и разобрать наиболее трудные варианты).

V. Разбор задач ( ответы и решения )

VI. Подведение итогов урока

Вы смотрели: Поурочное планирование по алгебре для 8 класса. УМК Макарычев (Просвещение). ГЛАВА III. КВАДРАТНЫЕ УРАВНЕНИЯ. § 9. Дробные рациональные уравнения (11 ч). Урок 63. Контрольная работа № 6 «Дробные рациональные уравнения» + ОТВЕТЫ и РЕШЕНИЯ.


источники:

http://nsportal.ru/shkola/algebra/library/2019/05/31/kontrolnaya-rabota-po-teme-drobnye-ratsionalnye-uravneniya

http://uchitel.pro/%D1%83%D1%80%D0%BE%D0%BA-63-%D0%BA%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F-%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%B0-%E2%84%96-6-%D0%B4%D1%80%D0%BE%D0%B1%D0%BD%D1%8B%D0%B5-%D1%80/