Квадратное уравнение на комплексной плоскости
. Вы вводите его по ссылке решение уравнений онлайн , указываете, что i – это комплексная единица (после того как ввели уравнение и нажали кнопку “решить”), нажимаете кнопку под формой “Обновить” и получаете ответ как здесь. Если в ответе присутствуют корни из комплексных чисел, то можно воспользоваться калькулятором по упрощению комлексных чисел по ссылке
© Контрольная работа РУ – примеры решения задач
Квадратное уравнение с комплексными корнями
Вы будете перенаправлены на Автор24
Рассмотрим решение уравнений с комплексными корнями и коэффициентами.
Двучленным называется уравнение вида $x^
Рассмотрим три случая:
Решить уравнение: $x^ <3>=8$.
Так как $A>0$, то $x_
При $k=0$ получаем $x_ <0>=\sqrt[<3>] <8>\cdot \left(\cos 0+i\cdot \sin 0\right)=\sqrt[<3>] <8>=2$.
При $k=1$ получаем
\[x_ <1>=\sqrt[<3>] <8>\cdot \left(\cos \frac<2\pi > <3>+i\cdot \sin \frac<2\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>+\frac <\sqrt<3>> <2>\cdot i)=-1+\sqrt <3>\cdot i.\]
При $k=2$ получаем
\[x_ <2>=\sqrt[<3>] <8>\cdot \left(\cos \frac<4\pi > <3>+i\cdot \sin \frac<4\pi > <3>\right)=\sqrt[<3>] <8>\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=2\cdot (-\frac<1> <2>-\frac <\sqrt<3>> <2>\cdot i)=-1-\sqrt <3>\cdot i.\]
Решить уравнение: $x^ <3>=1+i$.
Готовые работы на аналогичную тему
Так как $A$ – комплексное число, то
Тригонометрическая форма записи некоторого комплексного числа имеет вид $z=r(\cos \varphi +i\cdot \sin \varphi )$.
По условию $a=1,b=1$.
Вычислим модуль исходного комплексного числа:
Вычислим аргумент исходного комплексного числа:
\[\varphi =\arg z=arctg\frac<1> <1>=arctg1=\frac<\pi > <4>\]
Подставим полученные значения и получим:
Уравнение перепишем в виде:
При $k=0$ получаем $x_ <0>=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi /4> <3>+i\cdot \sin \frac<\pi /4> <3>\right)=\sqrt[<3>] <\sqrt<2>> \cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)=\sqrt[<6>] <2>\cdot \left(\cos \frac<\pi > <12>+i\cdot \sin \frac<\pi > <12>\right)$.
При $k=1$ получаем
При $k=2$ получаем
Квадратным называется уравнение вида $ax^ <2>+bx+c=0$, где коэффициенты $a,b,c$ в общем случае являются некоторыми комплексными числами.
Решение квадратного уравнения находится с помощью дискриминанта $D=b^ <2>-4ac$, при этом
В случае, когда дискриминант является отрицательным числом, корни данного уравнения являются комплексными числами.
Решить уравнение $x^ <2>+2x+5=0$ и изобразить корни на плоскости.
\[D=2^ <2>-4\cdot 1\cdot 5=4-20=-16.\]
Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 1.
В случае, когда уравнение имеет комплексные корни, они являются комплексно-сопряженными числами.
Комплексное число вида $\overline
Известно, что если $x_ <1,2>$ являются корнями квадратного уравнения $ax^ <2>+bx+c=0$, то данное уравнение можно переписать в виде $(x-x_ <1>)(x-x_ <2>)=0$. В общем случае $x_ <1,2>$ являются комплексными корнями.
Зная корни уравнения $x_ <1,2>=1\pm 2i$, записать исходное уравнение.
Запишем уравнение следующим образом:
\[x^ <2>-(1-2i)\cdot x-x\cdot (1+2i)+(1-2i)\cdot (1+2i)=0\] \[x^ <2>-x+2i\cdot x-x-2i\cdot x+1-4i^ <2>=0\] \[x^ <2>-2x+1+4=0\] \[x^ <2>-2x+5=0\]
Следовательно, $x^ <2>-2x+5=0$ – искомое уравнение.
Рассмотрим квадратное уравнение с комплексными коэффициентами.
Решить уравнение: $z^ <2>+(1-2i)\cdot z-(1+i)=0$ и изобразить корни на плоскости.
Так как $D>0$, уравнение имеет два корня:
Изображение корней уравнения на комплексной плоскости (так как корни комплексные) приведено на рис. 2.
В случае, когда уравнение имеет комплексные коэффициенты, его корни не обязательно являются комплексно-сопряженными числами.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 11 2021
Сергей Евгеньевич Грамотинский
Эксперт по предмету «Математика»
Работаем по будням с 10:00 до 20:00 по Мск
Регистрация прошла успешно!
На email мы отправили пароль для доступа ко всем сервисам
Не пропусти промокод на скидку в ближайших письмах
Квадратное уравнение с комплексными корнями и коэффициентами
Пусть задано квадратное уравнение $ax^2+bx+c=0$, где коэффициенты $a$, $b$ и $c$ – в общем случае являются комплексными. Его решение находим с помощью дискриминанта
В общем случае и дискриминант, и корни уравнения являются комплексными числами.
Задание. Составить квадратное уравнение, которое имеет корни $z_<1>=1-i$ и $z_<2>=4-5i$. Решить его.
Решение. Известно, что если $z_1$, $z_2$ – корни квадратного уравнения $z^2+bz+c=0$, то указанное уравнение можно записать в виде $(z-z_1)(z-z_2)=0$. А тогда, учитывая этот факт, имеем, что искомое уравнение можно записать следующим образом:
Раскрываем скобки и выполняем операции над комплексными числами:
$z^<2>+(-5+6 i) z-(1+9 i)=0$ – искомое квадратное уравнение.
Решим полученное уравнение. Найдем дискриминант:
$$D=(-5+6 i)^<2>-4 \cdot 1 \cdot(-(1+9 i))=-11-60 i+4+36 i=$$ $$=-7-24 i$$
Так как при извлечении корня из комплексного числа в результате получится комплексное число, то корень из дискриминанта будем искать в виде $\sqrt
$$\sqrt<-7-24 i>=a+b i \Rightarrow-7-24 i=(a+b i)^ <2>\Rightarrow$$ $$\Rightarrow-7-24 i=a^<2>+2 a b i-b^<2>$$
Используя тот факт, что два комплексных числа будут равными, если равны их действительные и мнимые части соответственно, получим систему для нахождения неизвестных значений $a$ и $b$:
решив которую, имеем, что $a_1=3$, $b_1=-4$ или $a_2=-3$, $b_2=4$. Рассматривая любую из полученных пар, например, первую, получаем, что $\sqrt
Ответ. $z^<2>+(-5+6 i) z-(1+9 i)=0$
http://spravochnick.ru/matematika/kompleksnye_chisla_i_mnogochleny/kvadratnoe_uravnenie_s_kompleksnymi_kornyami/
http://www.webmath.ru/poleznoe/formules_16_14.php