Линейное уравнение первого порядка в полном дифференциале

Дифференциальные уравнения в полных дифференциалах

Введение

Если найдена такая функция U ( x, y ) , то уравнение принимает вид:
dU ( x, y ) = 0 .
Его общий интеграл:
U ( x, y ) = C ,
где C – постоянная.

Если дифференциальное уравнение первого порядка записано через производную:
,
то его легко привести к форме (1). Для этого умножим уравнение на dx . Тогда . В результате получаем уравнение, выраженное через дифференциалы:
(1) .

Свойство дифференциального уравнения в полных дифференциалах

Для того, чтобы уравнение (1) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось соотношение:
(2) .

Доказательство

Далее мы полагаем, что все функции, используемые в доказательстве, определены и имеют соответствующие производные в некоторой области значений переменных x и y . Точка x 0 , y 0 также принадлежит этой области.

Докажем необходимость условия (2).
Пусть левая часть уравнения (1) является дифференциалом некоторой функции U ( x, y ) :
.
Тогда
;
.
Поскольку вторая производная не зависит от порядка дифференцирования, то
;
.
Отсюда следует, что . Необходимость условия (2) доказана.

Докажем достаточность условия (2).
Пусть выполняется условие (2):
(2) .
Покажем, что можно найти такую функцию U ( x, y ) , что ее дифференциал:
.
Это означает, что существует такая функция U ( x, y ) , которая удовлетворяет уравнениям:
(3) ;
(4) .
Найдем такую функцию. Проинтегрируем уравнение (3) по x от x 0 до x , считая что y – это постоянная:
;
;
(5) .
Дифференцируем по y считая, что x – это постоянная и применим (2):

.
Уравнение (4) будет выполнено, если
.
Интегрируем по y от y 0 до y :
;
;
.
Подставляем в (5):
(6) .
Итак, мы нашли функцию, дифференциал которой
.
Достаточность доказана.

В формуле (6), U ( x 0 , y 0) является постоянной – значением функции U ( x, y ) в точке x 0 , y 0 . Ей можно присвоить любое значение.

Как распознать дифференциальное уравнение в полных дифференциалах

Рассмотрим дифференциальное уравнение:
(1) .
Чтобы определить, является ли это уравнение в полных дифференциалах, нужно проверить выполнение условия (2):
(2) .
Если оно выполняется, то это уравнение в полных дифференциалах. Если нет – то это не уравнение в полных дифференциалах.

Пример

Проверить, является ли уравнение в полных дифференциалах:
.

Здесь
, .
Дифференцируем по y , считая x постоянной:

.
Дифференцируем по x , считая y постоянной:

.
Поскольку:
,
то заданное уравнение – в полных дифференциалах.

Методы решения дифференциальных уравнений в полных дифференциалах

Метод последовательного выделения дифференциала

Наиболее простым методом решения уравнения в полных дифференциалах является метод последовательного выделения дифференциала. Для этого мы применяем формулы дифференцирования, записанные в дифференциальной форме:
du ± dv = d ( u ± v ) ;
v du + u dv = d ( uv ) ;
;
.
В этих формулах u и v – произвольные выражения, составленные из любых комбинаций переменных.

Пример 1

Ранее мы нашли, что это уравнение – в полных дифференциалах. Преобразуем его:
(П1) .
Решаем уравнение, последовательно выделяя дифференциал.
;
;
;
;

.
Подставляем в (П1):
;
.

Метод последовательного интегрирования

В этом методе мы ищем функцию U ( x, y ) , удовлетворяющую уравнениям:
(3) ;
(4) .

Проинтегрируем уравнение (3) по x , считая y постоянной:
.
Здесь φ ( y ) – произвольная функция от y , которую нужно определить. Она является постоянной интегрирования. Подставляем в уравнение (4):
.
Отсюда:
.
Интегрируя, находим φ ( y ) и, тем самым, U ( x, y ) .

Пример 2

Решить уравнение в полных дифференциалах:
.

Ранее мы нашли, что это уравнение – в полных дифференциалах. Введем обозначения:
, .
Ищем Функцию U ( x, y ) , дифференциал которой является левой частью уравнения:
.
Тогда:
(3) ;
(4) .
Проинтегрируем уравнение (3) по x , считая y постоянной:
(П2)
.
Дифференцируем по y :

.
Подставим в (4):
;
.
Интегрируем:
.
Подставим в (П2):

.
Общий интеграл уравнения:
U ( x, y ) = const .
Объединяем две постоянные в одну.

Метод интегрирования вдоль кривой

Функцию U , определяемую соотношением:
dU = p ( x, y ) dx + q ( x, y ) dy ,
можно найти, если проинтегрировать это уравнение вдоль кривой, соединяющей точки ( x 0 , y 0) и ( x, y ) :
(7) .
Поскольку
(8) ,
то интеграл зависит только от координат начальной ( x 0 , y 0) и конечной ( x, y ) точек и не зависит от формы кривой. Из (7) и (8) находим:
(9) .
Здесь x 0 и y 0 – постоянные. Поэтому U ( x 0 , y 0) – также постоянная.

Пример такого определения U был получен при доказательстве свойства уравнения в полных дифференциалах:
(6) .
Здесь интегрирование производится сначала по отрезку, параллельному оси y , от точки ( x 0 , y 0 ) до точки ( x 0 , y ) . Затем интегрирование производится по отрезку, параллельному оси x , от точки ( x 0 , y ) до точки ( x, y ) .

В более общем случае, нужно представить уравнение кривой, соединяющей точки ( x 0 , y 0 ) и ( x, y ) в параметрическом виде:
x 1 = s ( t 1) ; y 1 = r ( t 1) ;
x 0 = s ( t 0) ; y 0 = r ( t 0) ;
x = s ( t ) ; y = r ( t ) ;
и интегрировать по t 1 от t 0 до t .

Наиболее просто выполняется интегрирование по отрезку, соединяющим точки ( x 0 , y 0 ) и ( x, y ) . В этом случае:
x 1 = x 0 + ( x – x 0) t 1 ; y 1 = y 0 + ( y – y 0) t 1 ;
t 0 = 0 ; t = 1 ;
dx 1 = ( x – x 0) dt 1 ; dy 1 = ( y – y 0) dt 1 .
После подстановки, получается интеграл по t от 0 до 1 .
Данный способ, однако, приводит к довольно громоздким вычислениям.

Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.

Автор: Олег Одинцов . Опубликовано: 10-08-2012 Изменено: 02-07-2015

Уравнения в полных дифференциалах

В этой теме мы рассмотрим метод восстановления функции по ее полному дифференциалу, дадим примеры задач с полным разбором решения.

Бывает так, что дифференциальные уравнения (ДУ) вида P ( x , y ) d x + Q ( x , y ) d y = 0 могут содержать в левых частях полные дифференциалы некоторых функций. Тогда мы можем найти общий интеграл ДУ, если предварительно восстановим функцию по ее полному дифференциалу.

Рассмотрим уравнение P ( x , y ) d x + Q ( x , y ) d y = 0 . В записи левой его части содержится дифференциал некоторой функции U ( x , y ) = 0 . Для этого должно выполняться условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Полный дифференциал функции U ( x , y ) = 0 имеет вид d U = ∂ U ∂ x d x + ∂ U ∂ y d y . С учетом условия ∂ P ∂ y ≡ ∂ Q ∂ x получаем:

P ( x , y ) d x + Q ( x , y ) d y = ∂ U ∂ x d x + ∂ U ∂ y d y

∂ U ∂ x = P ( x , y ) ∂ U ∂ y = Q ( x , y )

Преобразовав первое уравнение из полученной системы уравнений, мы можем получить:

U ( x , y ) = ∫ P ( x , y ) d x + φ ( y )

Функцию φ ( y ) мы можем найти из второго уравнения полученной ранее системы:
∂ U ( x , y ) ∂ y = ∂ ∫ P ( x , y ) d x ∂ y + φ y ‘ ( y ) = Q ( x , y ) ⇒ φ ( y ) = ∫ Q ( x , y ) — ∂ ∫ P ( x , y ) d x ∂ y d y

Так мы нашли искомую функцию U ( x , y ) = 0 .

Найдите для ДУ ( x 2 — y 2 ) d x — 2 x y d y = 0 общее решение.

P ( x , y ) = x 2 — y 2 , Q ( x , y ) = — 2 x y

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x :

∂ P ∂ y = ∂ ( x 2 — y 2 ) ∂ y = — 2 y ∂ Q ∂ x = ∂ ( — 2 x y ) ∂ x = — 2 y

Наше условие выполняется.

На основе вычислений мы можем сделать вывод, что левая часть исходного ДУ является полным дифференциалом некоторой функции U ( x , y ) = 0 . Нам нужно найти эту функцию.

Так как ( x 2 — y 2 ) d x — 2 x y d y является полным дифференциалом функции U ( x , y ) = 0 , то

∂ U ∂ x = x 2 — y 2 ∂ U ∂ y = — 2 x y

Интегрируем по x первое уравнение системы:

U ( x , y ) = ∫ ( x 2 — y 2 ) d x + φ ( y ) = x 3 3 — x y 2 + φ ( y )

Теперь дифференцируем по y полученный результат:

∂ U ∂ y = ∂ x 3 3 — x y 2 + φ ( y ) ∂ y = — 2 x y + φ y ‘ ( y )

Преобразовав второе уравнение системы, получаем: ∂ U ∂ y = — 2 x y . Это значит, что
— 2 x y + φ y ‘ ( y ) = — 2 x y φ y ‘ ( y ) = 0 ⇒ φ ( y ) = ∫ 0 d x = C

где С – произвольная постоянная.

Получаем: U ( x , y ) = x 3 3 — x y 2 + φ ( y ) = x 3 3 — x y 2 + C . Общим интегралом исходного уравнения является x 3 3 — x y 2 + C = 0 .

Разберем еще один метод нахождения функции по известному полному дифференциалу. Он предполагает применение криволинейного интеграла от фиксированной точки ( x 0 , y 0 ) до точки с переменными координатами ( x , y ) :

U ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P ( x , y ) d x + Q ( x , y ) d y + C

В таких случаях значение интеграла никак не зависит от пути интегрирования. Мы можем взять в качестве пути интегрировании ломаную, звенья которой располагаются параллельно осям координат.

Найдите общее решение дифференциального уравнения ( y — y 2 ) d x + ( x — 2 x y ) d y = 0 .

Проведем проверку, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x :

∂ P ∂ y = ∂ ( y — y 2 ) ∂ y = 1 — 2 y ∂ Q ∂ x = ∂ ( x — 2 x y ) ∂ x = 1 — 2 y

Получается, что левая часть дифференциального уравнения представлена полным дифференциалом некоторой функции U ( x , y ) = 0 . Для того, чтобы найти эту функцию, необходимо вычислить криволинейный интеграл от точки ( 1 ; 1 ) до ( x , y ) . Возьмем в качестве пути интегрирования ломаную, участки которой пройдут по прямой y = 1 от точки ( 1 , 1 ) до ( x , 1 ) , а затем от точки ( x , 1 ) до ( x , y ) :

∫ ( 1 , 1 ) ( x , y ) y — y 2 d x + ( x — 2 x y ) d y = = ∫ ( 1 , 1 ) ( x , 1 ) ( y — y 2 ) d x + ( x — 2 x y ) d y + + ∫ ( x , 1 ) ( x , y ) ( y — y 2 ) d x + ( x — 2 x y ) d y = = ∫ 1 x ( 1 — 1 2 ) d x + ∫ 1 y ( x — 2 x y ) d y = ( x y — x y 2 ) y 1 = = x y — x y 2 — ( x · 1 — x · 1 2 ) = x y — x y 2

Мы получили общее решение дифференциального уравнения вида x y — x y 2 + C = 0 .

Определите общее решение дифференциального уравнения y · cos x d x + sin 2 x d y = 0 .

Проверим, выполняется ли условие ∂ P ∂ y ≡ ∂ Q ∂ x .

Так как ∂ ( y · cos x ) ∂ y = cos x , ∂ ( sin 2 x ) ∂ x = 2 sin x · cos x , то условие выполняться не будет. Это значит, что левая часть дифференциального уравнения не является полным дифференциалом функции. Это дифференциальное уравнение с разделяющимися переменными и для его решения подходят другие способы решения.

Уравнения в полных дифференциалах. Интегрирующий множитель

Дифференциальное уравнение первого порядка вида

называется уравнением в полных дифференциалах , если его левая часть представляет полный дифференциал некоторой функции , т.е.

Теорема. Для того, чтобы уравнение (1) являлось уравнением в полных дифференциалах, необходимо и достаточно, чтобы в некоторой односвязной области изменения переменных и выполнялось условие

Общий интеграл уравнения (1) имеет вид или

Пример 1. Решить дифференциальное уравнение .

Решение. Проверим, что данное уравнение является уравнением в полных дифференциалах:

так что т.е. условие (2) выполнено. Таким образом, данное уравнение есть уравнение в полных дифференциалах и

поэтому , где пока неопределенная функция.

Интегрируя, получаем . Частная производная найденной функции должна равняться , что дает откуда так что Таким образом, .

Общий интеграл исходного дифференциального уравнения .

При интегрировании некоторых дифференциальных уравнений можно так сгруппировать члены, что получаются легко интегрируемые комбинации.

Пример 2. Решить дифференциальное уравнение .

Решение. Здесь , так что условие (2) выполнено и, следовательно, данное уравнение есть уравнение в полных дифференциалах. Это уравнение легко привести к виду непосредственной группировкой его членов. С этой целью перепишем его так:

Поэтому изначальное уравнение можно записать в виде

Следовательно, есть общий интеграл исходного уравнения.

Интегрирующий множитель

В некоторых случаях, когда уравнение (1) не является уравнением в полных дифференциалах, удается подобрать функцию , после умножения на которую левая часть (1) превращается в полный дифференциал

Такая функция называется интегрирующим множителем . Из определения интегрирующего множителя имеем

Мы получили для нахождения интегрирующего множителя уравнение в частных производных.

Отметим некоторые частные случаи, когда удается сравнительно легко найти решение уравнения (5), т.е. найти интегрирующий множитель.

1. Если , то и уравнение (5) примет вид

Для существования интегрирующего множителя, не зависящего от , необходимо и достаточно, чтобы правая часть (6) была функцией только . В таком случае найдется квадратурой.

Пример 3. Решить уравнение .

Решение. Здесь . Имеем

Уравнение есть уравнение в полных дифференциалах. Его левую часть можно представить в виде

2. Аналогично, если есть функция только , то уравнение (1) имеет интегрирующий множитель , зависящий только от .

Пример 4. Решить уравнение .

Решение. Здесь . Имеем

Уравнение является уравнением в полных дифференциалах. Его можно записать в виде

Пример 5. Решить уравнение , если его интегрирующий множитель имеет вид .

Решение. Положим , тогда , и, следовательно,

Уравнение (5) для нахождения интегрирующего множителя будет иметь вид

и, значит, , откуда , т.е. . Умножая данное уравнение на , получим

Это есть уравнение в полных дифференциалах и его общий интеграл согласно (3) будет

После несложных преобразований будем иметь .


источники:

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/uravnenija-v-polnyh-differentsialah/

http://mathhelpplanet.com/static.php?p=uravneniya-v-polnyh-differentsialah