Линейные уравнения с дробями 7 класс алгебра

Решение уравнений с дробями

О чем эта статья:

5 класс, 6 класс, 7 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравнения

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Переведем новый множитель в числитель..

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение:

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Линейные уравнения 7 класс

    Линейные уравнения, решение которых начинается в курсе алгебры (7 класс) — это уравнения вида

    где a и b — числа, x — переменная.

    Уравнения, сводящиеся к виду ax=b при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей на число, отличное от нуля (то есть при помощи равносильных преобразований), также часто называют линейными (правильнее называть их уравнениями, сводящимися к линейным).

    Рассмотрим примеры уравнений, сводящихся к линейным, которые встречаются в начале курса алгебры 7 класса.

    Раскрываем скобки. Если перед скобками стоит множитель, умножаем этот множитель на каждое слагаемое в скобках. Если перед скобками стоит знак «+», знаки не меняем. Если перед скобками стоит знак «-«, знаки меняем на противоположные:

    Неизвестные слагаемые переносим в одну сторону, известные — в другую. При переносе знаки слагаемых меняем на противоположные:

    Обе части уравнения делим на число, стоящее перед иксом:

    Неизвестные слагаемые перенесём в левую часть, известные — в правую. Знак каждого слагаемого при переносе из одной части уравнения в другую меняем на противоположный:

    (Обратите внимание: хотя сумма слагаемых с переменной равна нулю, результат записываем не как 0, а как 0x).

    Какое бы число мы не подставили в это уравнение вместо x, получим верное равенство.

    Ответ: x — любое число.

    Можно сначала привести подобные слагаемые, чтобы упростить уравнение:

    а уже потом перенести: неизвестные — в одну сторону, известные — в другую:

    Это уравнение не имеет корней.

    Ответ: нет корней.

    Приводим подобные слагаемые:

    Переносим неизвестные слагаемые в одну сторону, известные — в другую, изменив при этом их знаки:

    Обе части уравнения делим на число, стоящее перед иксом:

    В следующий раз рассмотрим сводящиеся к линейным уравнениям уравнения с дробями.

    14 комментариев

    А в третьем уравнении ошибку вы допустилтхи. Перенесли неправильно 60х. Ответ должен быть х=24/53.

    Спасибо, Маша! Ошибка исправлена.

    Мария,всмсле!Там нет ошибок.У меня тоже ответ -24/53.Так как иксы в одну чторону,а числа в другую.Точнее если посмотреть на обычное линейное уравнение, например: x-3=0.
    x=0+3
    x=3.Обратите внимание,что решая любое уравнение иксы в левой части,а числа в правой (x=3);опять же иксы в левой части,а числа в правой и следовательно мы рассуждаем так во всех уравнениях

    я возможно ошибаюсь , но
    в уравнении №1) 4(9 — 5x) + 7x = 11 — 2(8x + 1)
    ответ будет не -9 , а 9.
    т к
    3х=-27
    х= -27/-3
    х=9 , потому что если и в делителе и в знаменателе имеются знаки минуса , оно (как в умножении)становится положительным .

    Полли, мы обе части уравнения делим на число, стоящее перед иксом: 3х=-27; х=-27:3, то есть знаки делимого и делителя разные, поэтому ответ со знаком «-«.

    Да админ прав, делаем проверку 3X(-9)=-27

    Х=-9 Потаму что если в делитиле и в знаментаиле имеются как вы сказали знаки минуса оно как в умножении не меняется.

    Нет
    Т.к. — делёный на + будет —

    Спасибо за понятное изложение темы. Перерыв десяток сайтов и только на вашем нашел ответ на вопрос » как решать линейные уравнения «. Вам + 5 в карму:)

    mne tut vse ponjatno. u menja problema s sostavleniem uravnenij/kak zapisatj zada4u matemati4eskim jazikom/ kombinatorika!

    Учим алгебра 7 класс. Как решать уравнения алгебра 7 класс, примеры, дроби, функции, степени, модули

    В 7 классе ученикам предстоит научиться решать уравнения, дроби, строить функции, разбираться в модулях. Для этого следует познакомиться с основными понятиями в темах, рассмотреть алгоритм решения и пошагово учиться находить ответы. Главное правило — начать с простых примеров, постепенно переходя на более сложные. Большинство задач можно решать несколькими методами (это касается и примеров), следует выбрать самый простой и удобный для себя.

    Как решать уравнения алгебра 7 класс

    Начнем с решения линейных уравнений (на рисунке показано, по какому принципу они устроены). Чтобы найти ответ в таких уравнениях, нужно совершать действия: раскрытие скобок, поиск подобных слагаемых, умножение/деление частей на одно и тоже число, перенос слагаемых из одной части уравнения в другую. Всё зависит от конкретного примера.

    Рассмотрим несколько примеров пошагового решения линейных уравнений.

    Пример 1.
    6x + 24 = 0

    Поскольку части уравнения (левая и правая) равны, то можно отнять из каждой одинаковое число. Равенство не изменится, а пример станет значительно проще. В представленном уравнении отняли 24 и слева, и справа. В левой части 24 сократилось, а в правой (0 — 24) получилось -24 (не забываем ставить знак минуса).

    Получилось: 6x = -24. Теперь можем сократить 6 и -24 на число 6 (или рассуждаем так: чтобы найти множитель, нужно произведение разделить на другой множитель). В ответе будет -4. Не забудьте в самом конце подставить полученное число вместо х. Совпал ответ — значит, все правильно.

    Можно рассуждать проще: чтобы упростить уравнение, нужно из левой части отправить в правую число 24, поменяв его знак. Равенство сохранится (на рисунке ниже).

    Пример 2.
    9 + 16x = 41 + 14x

    Это уравнение более сложное. Здесь важно запомнить несколько моментов:

    • числа без х переносятся в левую часть, а с х — в правую;
    • при переносе знаки меняют.

    Пример 3.
    7(10 — 4x) + 5x = 12 — 3(5x + 2)

    1. Раскрыть скобки, выполнив умножение: 7 умножаем на каждое число в скобках (в правой части -3 на каждое). При выполнении действия не забывайте сохранять знаки.
    2. Записываем уравнение, получившееся после раскрытия скобок. Ещё раз сверяем знаки.
    3. Числа с х отправляются в левую часть, без х — в правую. Знаки чисел, которые переходят в другую часть, меняем.
    4. Подсчитываем результат с обеих сторон.
    5. Делим -64 на -8 и получаем ответ. Не забываем, что минус на минус при делении и умножении дают плюс.

    В рассмотренных уравнениях корень точно определён. Так получается не всегда.

    Пример 4.

    Обратите внимание, в ответе получилось 0x = 0. Это значит, что x может быть любым числом, потому что при умножение хоть какого числа на 0 получится 0.

    В этом примере корней нет, так как любое число, которое умножают на 0, будет равно 0 (21 никак не получится).

    Как решать систему уравнений алгебра 7 класс

    Системой называют несколько уравнений, в которых нужно найти такие значения неизвестных, чтобы равенство сохранилось. Разберемся на примерах, как выглядят системы и какие методы их решения существуют.

    метод подстановки

    Из самого названия следует, что алгоритм требует что-то подставлять. Ниже представлена система, где нужно найти значения x и y.

    Суть метода подстановки: переменную в одном из уравнений выражают через другую переменную. Затем подставляют полученное выражение в другое уравнение.

    Смотрим на систему. Видим, что удобнее будет выразить x во втором уравнении (так как он один). Выражаем путем переноса за знак «равно» 12y. Получилось: x = 11 — 12y (не забываем менять знак при переносе числа).

    В первое уравнение вместо «x» записываем получившееся выражение. Меняем только x, остальное сохраняется в прежнем виде.

    Далее преобразуем уравнение, в которое поместили выражение. Раскрываем скобки (перемножаем 5 на каждое значение). y оставляем в левой части, числа переносим в правую, знаки меняем. Таким образом нашли значение y (y = 1).

    Теперь подставляем полученную единицу во второе уравнение (x = 11 — 12y).

    Убедиться в правильном решение можно так: подставьте полученные значения в систему. Если равенства сохранятся, значит, решено верно.

    метод сложения

    Чтобы решить систему методом сложения, нужно из двух уравнений сделать одно. Просто складываем первое и второе. Здесь «y» просто сократились, и получилось простое уравнение. Как только нашли значение «х», нужно подставить его в любой пример (здесь поставили во второе уравнение). В ответе пишется так: (4; 3) — первым всегда пишется х, затем у.

    графический метод

    У нас есть система, где y = 5x и y = -2x + 7. Рассмотрим алгоритм решения системы уравнений:

    1. Подбираем 2 числа для х. Мы взяли 0 и 1, подставляем в первое уравнение: y = 5 * 0 = 0; у = 5 * 1 = 5. Значит первая прямая имеет координаты: (0; 0) и (1; 5).
    2. Для второго уравнения подбираем значения х. Взяли 3 и 2, подставляем и находим у: -2 * 3 + 7 = 1; -2 * 2 + 7 = 3. Значит прямая имеет координаты (3; 1) и (2; 3).
    3. Отмечаем на графике соответствующие прямые, подписываем их название.
    4. на месте пересечения получившихся прямых ставим точку — это будет решение.
    5. Точка имеет координаты (1; 5).

    На заметку! Старайтесь подбирать такие значения х, чтобы у был небольшим. Так отмечать будет проще.

    Выбирайте самый удобный способ решения. Третий метод — графический, считают самым неточным.

    Как решать дроби 7 класс

    Дроби можно разделить на 2 основных вида:

    Они различаются в способе написания (смотрите рисунок ниже). В свою очередь и те, и другие делятся еще на несколько видов.

    Для начала рассмотрим решение примеров с десятичными дробями.

    Особое внимание при решении стоит уделить запятым. При сложении и вычитании запятые стоят строго друг под другом, при умножении это не имеет значения.

    Примеры решения обыкновенных дробей.

    • при сложении и вычитании нужно привести дроби к общему знаменателю, найти дополнительные множители. Так, для чисел 6 и 4 общим знаменателем стало число 24. Дополнительные множители считали так: 24 : 6 = 4 (для первой дроби) и 24 : 4 = 6 (для второй). Потом умножили доп. множители на числители и полученные числа сложили. Если в ответе получилась неправильная дробь, то выделяем целую часть, при необходимости сокращаем дроби.
    • при умножении пишем дроби под одной чертой, сокращаем.
    • при делении нужно вторую дробь перевернуть, поставить знак умножения и сократить дроби.

    Если пример состоит из простой и десятичной дроби, то следует привести их к одному виду (к которому проще или удобнее считать).

    Примеры 7 класс как решать

    Теперь закрепим решение дробей на примерах.

    Решение примера, представленного ниже:

    1. Видим, что присутствует как обыкновенная дробь, так и десятичные. Нужно привести к одному виду. Так как десятичных больше, и превратить 1/4 в этот вид проще, то делим 1 на 4, а целую часть сохраняем. Вышло 5,25.
    2. Далее умножаем — 3 на каждое число в скобках, внимательно следим за знаками.
    3. Остается от 10,4 отнять 9,3. В итоге вышло 1,1.

    Но можно было решить проще. Первое действие всегда в скобках. Поэтому от 5,25 отнимаем 2,15. Получится 3,1. Умножаем ее на 3 — вышло 9,3. И отнимаем: 10,4 — 9,3 = 1,1. Этот способ даже проще, потому что не нужно следить за знаками при раскрытии скобок.

    Чтобы верно решить следующий пример, нужно:

    • точно проставить порядок действий (умножение и деление делаем в первую очередь, затем складываем);
    • Умножить десятичные дроби столбиком, не забыть поставить запятую;
    • деление здесь простое: переставили запятую на один знак вправо, поделили, получили -2.
    • сложили числа.

    Как решать задачи алгебра 7 класс

    Задачи решаются путем составления уравнений.

    Другие примеры задач с подробными решениями в видео-материалах.

    Как решать функции алгебра 7 клас с

    Функцией принято считать зависимость y от x. При этом x является переменной (или аргументом), а у — это значение функции (зависимая переменная).

    • y(x) = 8x
    • y(x) = −3x — 62
    • y(x) = x−1 + 18

    Чтобы найти значение у, которое бы соответствовало определенному значению х, нужно просто это значение х подставить в функцию.

    Как решать степени алгебра 7 класс

    Если требуется взять какое-либо число несколько раз, то проще записать его в степени. Например, нужно двойку взять три раза, т. е.: 2 * 2 * 2. Получается длинная запись. Поэтому придумали писать так: 2³ (читается: два в третьей степени).

    Чтобы число возвести в степень (она указывается справа от числа вверху), нужно его умножать на самого себя столько раз, какая цифра указана. Рассмотрим подробнее на примерах.

    Не всегда получается возвести число в степень «в уме». Иногда посчитать сложно. Например, возвести 6 в 5 степень, быстро получится не у каждого. Чтобы всякий раз не считать столбиком, лучше выучить основные степени. Они представлены в таблице.

    При возведении любого числа в степень 1, получится это же число. Если возводить число в нулевую степень, в ответе будет 1.

    Рассмотрим несколько примеров со степенями.

    Отдельное внимание обращаем на возведение в степень отрицательного числа. Если такое число возводить в четную степень (2; 4; 6 и т.д.), то получится положительный ответ, если в нечетную, то ответ со знаком минус.

    Алгебра модули как решать

    Модулем числа называют это же число, только без знака минус. Например: | − 9 | = 9. При этом если число изначально неотрицательное, то оно остается прежним.

    Перейдем к простым примерам.

    Логично предположить, что под модулем будет число 4. Также подойдет число -4, ведь из-под модуля все равно выйдет положительное. Так, корнями уравнения будут: x = 4 и x = − 4.

    Из-под модуля не может выйти отрицательное число. Поэтому, если видим что-то похожее: Ι-8 + хΙ = -8, значит, корней не будет, так как уравнение заведомо нерешаемо.

    Другие примеры описаны в видео.

    Об Авторе

    Смотрите также

    Красивый подарок маме своими руками, 8 марта короткие пожелания, открытка 8 марта своими руками для детей: открытки на 8 марта своими руками шаблоны, цветные шаблоны открыток

    Явления живой и неживой природы 2 класс: биология живая неживая природа, признаки живой и неживой природы

    Подарок маме на 8 марта своими руками, какую сделать поделку для мамы: в детском саду, в школе, лучшие поделки своими руками. Рисунок маме 8 марта: рисование простые рисунки

    2 комментария

    Спасибо большое очень помогли.

    Огромное спасибо!А то учитель неможет нормально тему объяснить


    источники:

    http://www.algebraclass.ru/linejnye-uravneniya-7-klass/

    http://luckclub.ru/kak-reshat-zadaniya-po-algebre-7-klass-uravneniya-primery-drobi-funkcii-stepeni-moduli-kak-nauchitsya-reshat-algebru-7-klass