M1 m2 уравнение плоскости проходящей через точку и перпендикулярной к вектору

Уравнение плоскости, проходящей через точку перпендикулярно вектору

Пусть дана некоторая точка M0 и ненулевой вектор n. Через точку M0 можно провести только одну плоскость р перпендикулярную вектору n (рис. 201).

Выведем уравнение плоскости р. Пусть М — произвольная точка пространства. Очевидно, что точка М принадлежит плоскости р тогда и только тогда, когда вектор \(\overrightarrowM>\) перпендикулярен вектору n. Как известно, необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения. Поэтому уравнение плоскости, проходящей через точку M0 перпендикулярно вектору n, может быть записано в виде

Вектор n в уравнении (1) называется нормальным вектором плоскости. В качестве нормального вектора можно взять любой вектор, перпендикулярный плоскости.

Пусть точка M0 и вектор n заданы своими координатами в некоторой прямоугольной системе координат:

Обозначим координаты произвольной точки М плоскости р через х, у и z. Тогда вектор \(\overrightarrowM>\) имеет координаты х — х0, у — у0 и z — z0, а уравнение (1) в координатах записывается следующим образом:

Это уравнение называется уравнением плоскости, проходящей через точку (х0; у0; z0) перпендикулярно вектору (А; В; С).

Задача 1. Найти уравнение плоскости, проходящей через точку М0(-3; 4; 7) перпендикулярно вектору n = (1; 2; 6).

В данном случае х0 = -3, у0 = 4, z0 = 7; А = 1, В = -2, С = 6. Подставив эти значения в уравнение (2), получим искомое уравнение

3адачa 2. Даны точки M1 (2; -1; 3) и M2(4; 5; 0). Написать уравнение плоскости, проходящей через точку М2 перпендикулярно вектору \(\overrightarrowM_2>\).

За нормальный вектор плоскости можно взять вектор n = \(\overrightarrowM_2>\) = (2; 6; -3). После подстановки координат нормального вектора и координат точки М0 = М2(4; 5; 0) в уравнение (2) получим

Задача 3. В треугольнике с вершинами в точках А1<-5; 2; 7), А2(5; 0; 6), А3(0; -1; 2) проведена медиана А1М0. Найти уравнение плоскости, проходящей через точку М0 перпендикулярно медиане А1М0.

За нормальный вектор плоскости можно принять вектор n = \(\overrightarrowM_0>\). Определим его координаты. Точка М0 — середина отрезка А2А3, поэтому, если (х0; у0; z0) — ее координаты, то

Координаты нормального вектора n = (А; В; С), следовательно, равны

A = 5 /2 + 5 = 15 /2, В = — 1 /2 — 2 = — 5 /2, С = 4 — 7 = — 3.

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой онлайн

С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через данную точку и перпендикуляной данной прямой. Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямой (канонический или параметрический) введите координаты точки и коэффициенты уравнения прямой в ячейки и нажимайте на кнопку «Решить».

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение плоскости, проходящей через данную точку и перпендикулярной данной прямой − теория, примеры и решения

.(1)

Построить уравнение плоскости α, проходящей через точку M0 и перпендинулярной прямой L.

Решение. Уравнение плоскости, проходящей через точку M0 и имеющий нормальный вектор n=<A, B, C> имеет следующий вид:

A(xx0)+B(yy0)+C(zz0)=0.(2)

Направляющий вектор прямой L имеет вид q=<m, p, l>. Поскольку прямая L и плоскость α перпендикулярны друг другу, следовательно нормальный вектор плоскостти и направляющий вектор прямой должны быть коллинеарны (Рис.1). Тогда вместо координат нормального вектора плоскости нужно подставить координаты направляющего вектора прямой L. Получим следующее уравнение плоскости:

m(xx0)+p(yy0)+l(zz0)=0.(3)

Упростим уравнение (3):

mx+py+lz+D=0,(4)

Таким образом уравнение (4) определяет плоскость, проходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1).

Ответ. Уравнение плоскости прпоходящей через точку M0(x0, y0, z0) и перпендикулярной прямой (1) имеет вид (4).

Пример 1. Найти уравнение плоскости α, проходящую через точку M0(3, −1, 2) и перпендикулярной прямой L:

(7)

Решение. Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой (2).

Направляющий вектор прямой L имеет следующий вид: :

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (2) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(8)

Подставляя координаты точки M0 и направляющего вектора q в (8), получим:

(9)

Упростим уравнение (9):

2x+5y+4z−9=0.(10)

Ответ: Уравнение плоскости, проходящей через точку M0(3, −1, 2) и перпендикулярной прямой (7) имеет вид (10).

Пример 2. Найти уравнение плоскости α, проходящую через точку M0(4, 3, −6) и перпендикулярной прямой L, заданной параметрическим уравнением:

(11)

Решение. Приведем параметрическое уравнение (11) к каноническому виду:

(11′)

Уравнение плоскости α, проходящей через точку M0(x0, y0, z0) и имеющий нормальный вектор n=<A, B, C> представляется формулой:

A(xx0)+B(yy0)+C(zz0)=0.(12)

Направляющий вектор прямой L имеет следующий вид:

Для того, чтобы прямая L была перпендикулярна плоскости α, нормальный вектор плоскости α должен быть коллинеарным направляющему вектору прямой L, т.е. уравнение плоскости (12) примет следующий вид:

m(xx0)+p(yy0)+l(zz0)=0.(13)

Подставляя координаты точки M0 и направляющего вектора q в (13), получим:

Упростим уравнение (13):

−5x+3y+11z+77=0.(14)

Ответ. Уравнение плоскости, проходящей через точку M0(4, 3, −6) и перпендикулярной прямой (11) имеет вид (14).

Задача 29252 5.2.20) Составить уравнение плоскости.

Условие

5.2.20) Составить уравнение плоскости, проходящей через точки M1(4; 2; 3) и М2 (2; 0; 1) и перпендикулярной к плоскости х + 2у + 3z + 4 = 0.

Решение

Пусть M(x;y;z) произвольная точка плоскости
Значит векторы
vector=(x-4;y-2;z-3);
vector=(2-4;0-2;1-3)=(-2;-2;-2)
и нормальный вектор vector=(1;2;3>
[b]компланарны [/b].

Условие [b]компланарности[/b] векторов, заданных
координатами — равенство нулю определителя третьего порядка,
составленного из координат векторов.

Вместо вектора vector=(-2;-2;-2) можно
можно взять коллинеарный ему вектор с координатами (1;1;1)

О т в е т. х-2у+z-3=0


источники:

http://matworld.ru/analytic-geometry/uravnenie-ploskosti3-online.php

http://reshimvse.com/zadacha.php?id=29252