Механические свойства ткани кровеносных сосудов уравнение ламе

Медицинская физика.

21. Механические свойства биологических тканей.

Под механическими свойствами биологических тканей понимают две их разновидности. Одна связана с процессами биологической подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ, их природа рассматривается в курсе биохимии. Условно указанную группу называют активными механическими свойствами биологических систем.

Костная ткань. Кость – основной материал опорно-двигательного аппарата. Две трети массы компактной костной ткани (0,5 объема) составляет неорганический материал, минеральное вещество кости – гидроксилантит 3 СаЗ(РО) х Са(ОН)2. Это вещество представлено в форме микроскопических кристалликов.

Плотность костной ткани равна 2400 кг/м3, ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма и, конечно, от участка организма. Строение кости придает ей нужные механические свойства: твердость, упругость и прочность.

Кожа. Она состоит из волокон коллагена и эластина и основной ткани – матрицы. Коллаген составляет около 75 % сухой массы, а эластин – около 4 %. Эластин растягивается очень сильно (до 200–300 %), примерно как резина. Коллаген может растягиваться до 10 %, что соответствует капроновому волокну.

Таким образом, кожа является вязкоупругим материалом с высокоэластическими свойствами, она хорошо растягивается и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, состоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров. Механическое поведение скелетной мышцы следующее: при быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается. При большей деформации происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2: 1, а в бедренной артерии – 1: 2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артериолах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудистой ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно рассматривать деформацию сосуда в целом как результат действия давления изнутри на упругий цилиндр. Две половины цилиндрического сосуда взаимодействуют между собой по сечениям стенок цилиндра. Общая площадь этого сечения взаимодействия равна 2hl. Если в сосудистой стенке существует механическое напряжение s, то сила взаимодействия двух половинок сосуда равна:

Курсовая работа: Элементы биомеханики

1. Деформация и её виды

2. Основные характеристики деформации. Закон Гука для упругой деформации

3. Реологическое моделирование биотканей

4. Механические свойства биотканей

4.1Механические свойства костной ткани

4.2 Механические свойства ткани кровеносных сосудов

1. Деформация и её виды

деформация биоткань механический костный сосуд

Деформацией называется изменение взаимного расположения точек тела, которое сопровождается изменением его форм и размеров, обусловленное действием внешних сил на тело.

1. Упругая – полностью исчезает после прекращения действия внешних сил.

2. Пластическая (остаточная) – остается после прекращения действия внешних сил.

3. Упруго-пластическая – неполное исчезновение деформации.

4. Вязко-упругая – сочетание вязкого течения и эластичности.

В свою очередь упругие деформации бывают следующих видов:

а) деформация растяжения или сжатия происходит под действием сил, действующих в направлении оси тела:

2. Основные характеристики деформации

Деформация растяжения (сжатия) возникает в теле при действии силы, направленной вдоль его оси.

где l0 – исходный линейный размер тела.

Δl – удлинение тела

Деформация ε (относительное удлинение) определяется по формуле

ε – безразмерная величина.

Мерой сил, стремящихся вернуть атомы или ионы в первоначальное положение является механическое напряжение σ. При деформации растяжения напряжение σ можно определить отношением внешней силы к площади поперечного сечения тела:

Упругая деформация подчиняется закону Гука:

где Е – модуль нормальной упругости (модуль Юнга – это механическое

напряжение, которое возникает в материале при увеличении

первоначальной длины тела в два раза).

Если живые ткани мало деформируется, то в них целесообразно определять не модуль Юнга, а коэффициент жесткости. Жесткость характеризует способность физической среды сопротивляться образованию деформаций.

Представим экспериментальную кривую растяжения:

ОА – упругая деформация, подчиняющася закону Гука. Точка В – это предел упругости т.е. максимальное напряжение при котором ещё не имеет место деформация, остающаяся в теле после снятия напряжения. ВД – текучесть (напряжение, начиная с которого деформация возрастает без увеличения напряжения).

Упругость, свойственную полимерам называют эластичностью.

Всякий обрзец, подвергнутый сжатию или растяжению вдоль его оси, деформируется так же и в перпендикулярном направлении.

Абсолютное значение отношения поперечной деформации к продольной деформации образца называется коэффициентом поперечной деформации или коэффициентом Пуассона и обозначается:

(безразмерная величина)

Для несжимаемых материалов (вязкотекучие пасты; резины) μ=0,5; для большинства металлов μ≈0,3.

Величина коэффициента Пуассона при растяжении и сжатии одна и та же. Таким образом, определяя коэффициент Пуассона можно судить о сжимаемости материала.

3. Реологическое моделирование биотканей

Реология – это наука о деформациях и текучести вещества.

Упругие и вязкие свойства тел легко моделируются.

Представим некоторые реологические модели.

а) Модель упругого тела – это упругая пружина.

Напряжение, возникающее в пружине, определяется законом Гука:

Если упругие свойства материала одинаковы во всех направлениях, то он называется изотропным, если эти свойства неодинаковы – анизотропным.

б) Модель вязкой жидкости — это жидкость, находящаяся в цилиндре с поршнем, неплотно прилегающим к его стенкам или: — это поршень с отверстиями, который движется в цилиндре с жидкостью.

Для этой модели характерна прямо пропорциональная зависимость между возникающим напряжением σ и скоростью деформации

где η – коэффициент динамической вязкости.

в) Реологическая модель Максвелла представляет собой последовательно соединенные упругий и вязкий элементы.

Работа отдельных элементов зависит от скорости нагрузки общего элемента.

Для упругой деформации выполняется закон Гука:

Скорость упругой деформации будет:

(1)

Для вязкой деформации:

тогда скорость вязкой деформации будет:

(2)

Общая скорость вязко-упругой деформации равна сумме скоростей упругой и вязкой деформаций.

(3)

Это есть дифференциальное уравнение модели Максвелла.

Вывод уравнения ползучести биоткани. Если к модели приложить силу, то пружина мгновенно удлиняется, а поршень движется с постоянной скоростью. Таким образом, на данный модели реализуется явление ползучести. Если F=const, то возникающее напряжение σ=const, т.е. тогда из уравнения (3) получим:

, отсюда

— уравнение ползучести биоткани.

Представим график ползучести:

Вывод уравнения релаксации напряжения в биотканях.

Если модель Максвелла растянуть и закрепить, то пружина начнет сокращаться. Со временем будет происходить релаксация, т.е. уменьшение напряжения. Если ε=const, то тогда уравнение (3) примет вид:

Решаем дифференциальное уравнение:

где σ0 – начальное напряжение.

— уравнение релаксации напряжения

Представим график релаксации напряжения.

г) Модель Фойгта представляет собой параллельно соединенные упругий и вязкий элементы. Эта модель характерна для полимеров.

4. Механические свойства биотканей

Под механическими свойствами биотканей понимают две разновидности:

Первая (активная) связана с процессами биологической подвижности: сокращение мышц, рост клеток, движение хромосом в клетках, их деления и т.д. Эти процессы обусловлены химическими процессами и энергетически обеспечиваются АТФ. Другая разновидность — пассивные механические свойства биосистем обусловленные внешними воздействиями.

Биологическая ткань – композиционный материал, образованный объемным сочетанием химически разнородных элементов и обладающий реологическими свойствами, отличающимися от свойств отдельных компонентов биоткани. Основу биотканей составляют коллаген, эластин и связующее вещество.

Механические воздействие на биоткани вызывают в них деформации и напряжения, появляется механическое движение, распространяются волны. Физиологическая реакция на эти факторы зависит от механических свойств биотканей. Знать, как меняются эти реакции и свойства тканей очень важно для профилактики, защиты организма, для применения искусственных тканей и органов, а также для понимания их физиологии и патологии.

В биомеханике все ткани человека подразделяются по плотности и типу пространственной структуры на твердые (кость, эмаль и дентин зубов), мягкие (мышцы, эпителий, эндотелий, соединительная ткань, паренхима), жидкие (кровь, лимфа, ликвор, слюна, сперма).

4.1 Механические свойства костной ткани

Костная ткань – основной материал опорно-двигательной системы. Прочность костной ткани зависит от химического состава, общей структуры, системы внутреннего армирования, количества и прочности компонентов, ориентации основных компонентов по отношению к продольной оси кости, возраста, плотности, индивидуальных условий роста и.т.д.

Компактная костная ткань представляет собой среду с пятью структурными уровнями.

Строение компактной костной ткани по Кнетсу.

Название: Элементы биомеханики
Раздел: Рефераты по биологии
Тип: курсовая работа Добавлен 01:49:20 13 мая 2011 Похожие работы
Просмотров: 1432 Комментариев: 22 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать
№ уровняСостав уровня
1Биополимерная молекула трипоколлагена и неорагнические кристаллы (гидроксилопатит 3Са3 (РО4 )2 Са(ОН)2 )
2Микрофибриллы коллагена (образованы пятью молекулами трипоколлагена)
3Волокно (армирующий компонент) состоит из большого количества микрофибрилл и связанные с ними микрокристаллы.
4Ламеллы (наименьший самостоятельный конструкционный элемент) – это тонкие изогнутые пластинки, состоящие из коллагенно-минеральных веществ, объединённых при помощи вяжущего вещества.
5Остеоны – образуются вокруг кровеносных сосудов, включающихся в объем кости. Состоят из концентрически расположенных костных ламелл.

Плотность костной ткани »2,4 г/см 3 . Минеральные компоненты кости составляют »70 % массы кости, а белковые »20 %.

С увеличением возраста в костной ткани протекает ряд изменений. Изменяется химический состав и внутренняя структура, возникает множество вторичных остеонов, образующих новую внутреннюю конструктивную систему. При старении биологическая активность уменьшается, меняется степень минерализации, а также порядок расположения минеральных кристаллов и остенов, уменьшается количество связующего вещества, некоторая чать ткани исчезает и появляются поры.

Обновление костной ткани происходит дискретно – в определенных местах, на ограниченных участках. В течение жизни человека один и тот же участок кости обновляется неоднократно. К 35 годам процесс костеобразования замедляется. Костная масса у вегетарианцев больше, т.к. в растительной пище много солей. Курение и алкоголь уменьшают костную массу. Недостаточное содержание кальция уменьшает прочность костной ткани, что приводит к остеопорозу.

Волокна костной ткани деформируются преимущественно упругим образом, а матрица (остальная часть) – пластически и разрушаются хрупким образом.

Зависимость напряжения от деформации: s=f(e) компактной костной ткани имеет следующий вид (эта зависимость аналогична для твердого тела):

Напряжение σмах при котором материал разрывается, называется пределом прочности.

Представим предел прочности костной ткани и её компонентов при сжатии и растяжении:

Механические свойства сосудов. Уравнение Ламе. Ударный объем крови. Пульсовая волна,скорость ее распространения. Физические основы клинического метода измерения давления крови.

Ткань кровеносных сосудовопределяется свойствами коллагена, эластина и гладких мышц. Содержание этих компонентов изменяется по ходу кровеносной системы, по мере удаления от сердца увеличивается доля гладких мышц. Рассмотрим деформацию сосуда в целом как результат действия давления изнутри на упругий цилиндр.Рассмотрим цилиндрическую часть кровеносного сосуда длиной , толщиной и радиусом внутренней части . Общая площадь сечения взаимодействия равна . Если в стенке существует механическое напряжение , то сила взаимодействия двух половинок сосуда:

(1)

Эта сила уравновешивается силами давления на цилиндр изнутри (стрелки на рисунке). Равнодействующую этих сил можно найти, умножив давление на проекцию площади полуцилиндра, на вертикальную плоскость . Эта проекция равна , тогда (1) через давление равна

(2)

Приравнивая (1) и (2) получим:

(3)

Уравнение (3) получило название – уравнение Ламе.

Работа, совершаемая сердцем, затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.

Vу – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:

A1 = FI = pSI = pVy.

На сообщение кинетической энергии этому объему крови затрачена работа:

где р – плотность крови;

υ – скорость крови в аорте.

Таким образом, работа левого желудочка сердца при сокращении равна:

Так как работа правого желудочка принимается равной 0,2 от работы левого, то работа всего сердца при однократном сокращении равна:

Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока.

При сокращении сердца (систолы) кровь выбрасывается из сердца в аорту и отходящие от нее артерии. Особенностью системы кровообращения является эластичность стенок сосудов. Если бы стенки кровеносных сосудов были жесткими, о давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к периферийным сосудам. Эластичность стенок сосудов приводит к тому, что во время систолы кровь выталкивается сердцем, растягивая аорту, то есть крупные сосуды воспринимают за время систолы больше крови, чем ее отток к периферии. Систолическое давление человека в норме равно приблизительно 16 кПа (16× 10 3 Па). Во время расслабления сердца (диастола) растянутые кровеносные сосуды сокращаются, и потенциальная энергия этих сосудов переходит в кинетическую энергию крови, которая начинает двигаться в сосудах с некоторой скоростью. При этом поддерживается диастолическое давление, примерно равное 11 кПа.

Волна повышенного давления, распространяющаяся по аорте и артериям во время систолы, называется пульсовой волной. Скорость пульсовой волны можно оценить по формуле Моенса-Кортевега:

,

где Е — модуль упругости сосудов; r — плотность вещества сосуда; а — толщина сосуда; R — радиус сосуда.

Пульсовая волна распространяется со скоростью 5- 10 м/с, поэтому за время систолы (Тс

0,3 с) она должна пройти расстояние от сердца до конечностей. Это означает, что фронт пульсовой волны достигает конечностей раньше, чем начнется диастола. Пульсовой волне соответствует пульсирование скорости кровотока в крупных артериях, однако скорость крови существенно меньше скорости распространения пульсовой волны и, примерно, равна 0,3- 0,5 м/с. При этом ток крови принимает непрерывный характер.

При таком механизме продвижения крови только часть энергии, развиваемой мышцей при сокращении, передается непосредственно крови в аорте и переходит в ее кинетическую энергию. Остальная часть энергии переходит в потенциальную энергию растяжения эластичных стенок крупных сосудов и затем уже по мере возвращения их в исходное состояние эта энергия передается крови в период диастолы. Этим и объясняется непрерывный характер тока крови.

Систолическое и диастолическое давление в артерии можно измерить непосредственно с помощью иглы, соединенной с манометром. Однако в медицине широко используется бескоровный метод, предложенный Н.С.Коротковым. Он заключается в том, что измеряют давление, которое необходимо приложить снаружи, чтобы сжать артерию до прекращения в ней тока крови. Это давление весьма близко к давлению крови в артерии. Измерение обычно производится на плечевой артерии выше локтевого сгиба

Сжатие артерии осуществляется с помощью манжеты, которая представляет собой резиновую камеру в чехле из тонкого материала. Манжету обертывают вокруг руки между плечом и локтем. При накачивании воздуха через шланг с помощью резиновой груши давление в манжете растет. Величина давления определяется по манометру, соединенному с манжетой. В процессе накачивания воздуха в манжету следят за пульсом на лучевой артерии с помощью датчика (фонендоскоп или пьезоэлектрический преобразователь). Воздух накачивают в манжету до давления на 10- 20 мм рт.ст. выше того, при котором перестает прослушиваться пульс на лучевой артерии. Затем, медленно открывая выпускной клапан резиновой груши, постепенно снижают давление в манжете, прислушиваясь к звукам в фонендоскопе (или динамике). Соотношение между изменением давления (р) в манжете и «тонами Короткова» показано схематически на рис. 5. Пока артерия сжата полностью, никакие звуки не прослушиваются. При снижении в манжете давления начинают прослушиваться отчетливые тоны (участок а на рис. 5). Эти тоны обусловлены вибрацией стенок артерии непосредственно за манжетой под действием мощных толчков крови, которые проходят сквозь сжатый манжетой участок сосуда только в моменты систолы сердца. Показание манометра, соответствующее моменту появлении тонов, определяет систолическое давление.

При дальнейшем снижении давления в манжете тоны дополняются шумами (участок б на рис. 5). Эти шумы обуслов- лены турбулентным течением крови через частично сжатый манжетой участок артерии. Затем шумы уменьшаются и в фонендоскопе вновь прослушиваются чистые тоны (участок в на рис. 5). Эти тоны быстро затухают, в артерии устанавливается ламинарное течение крови. Показание манометра в момент резкого ослабления тонов соответствует диастолическому давлению.

Для здорового нормального человека рс = 10- 120 мм рт.ст., рд = 70- 80 мм рт.ст.


источники:

http://www.bestreferat.ru/referat-215281.html

http://lektsia.com/7x46ff.html