Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение тригонометрических уравнений.
Этот математический калькулятор онлайн поможет вам решить тригонометрическое уравнение. Программа для решения тригонометрического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> –> Введите тригонометрическое уравнение
Решить уравнение
Немного теории.
Тригонометрические уравнения
Уравнение cos(х) = а
Из определения косинуса следует, что \( -1 \leqslant \cos \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение cos x = a не имеет корней. Например, уравнение cos х = -1,5 не имеет корней.
Уравнение cos x = а, где \( |a| \leqslant 1 \), имеет на отрезке \( 0 \leqslant x \leqslant \pi \) только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если a
Уравнение sin(х) = а
Из определения синуса следует, что \( -1 \leqslant \sin \alpha \leqslant 1 \). Поэтому если |a| > 1, то уравнение sin x = а не имеет корней. Например, уравнение sin x = 2 не имеет корней.
Уравнение sin х = а, где \( |a| \leqslant 1 \), на отрезке \( \left[ -\frac<\pi><2>; \; \frac<\pi> <2>\right] \) имеет только один корень. Если \( a \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right] \); если а
Уравнение tg(х) = а
Из определения тангенса следует, что tg x может принимать любое действительное значение. Поэтому уравнение tg x = а имеет корни при любом значении а.
Уравнение tg x = а для любого a имеет на интервале \( \left( -\frac<\pi><2>; \; \frac<\pi> <2>\right) \) только один корень. Если \( |a| \geqslant 0 \), то корень заключён в промежутке \( \left[ 0; \; \frac<\pi> <2>\right) \); если а
Решение тригонометрических уравнений
Выше были выведены формулы корней простейших тригонометрических уравнений sin(x) = a, cos(x) = а, tg(x) = а. К этим уравнеииям сводятся другие тригонометрические уравнения. Для решения большинства таких уравнений требуется применение различных формул и преобразований тригонометрических выражений. Рассмотрим некоторые примеры решения тригонометрических уравнений.
Уравнения, сводящиеся к квадратным
Решить уравнение 2 cos 2 (х) – 5 sin(х) + 1 = 0
Заменяя cos 2 (х) на 1 – sin 2 (х), получаем
2 (1 – sin 2 (х)) – 5 sin(х) + 1 = 0, или
2 sin 2 (х) + 5 sin(х) – 3 = 0.
Обозначая sin(х) = у, получаем 2у 2 + 5y – 3 = 0, откуда y1 = -3, y2 = 0,5
1) sin(х) = – 3 — уравнение не имеет корней, так как |-3| > 1;
2) sin(х) = 0,5; \( x = (-1)^n \text
Ответ \( x = (-1)^n \frac<\pi> <6>+ \pi n, \; n \in \mathbb
Решить уравнение 2 cos 2 (6х) + 8 sin(3х) cos(3x) – 4 = 0
Используя формулы
sin 2 (6x) + cos 2 (6x) = 1, sin(6х) = 2 sin(3x) cos(3x)
преобразуем уравнение:
3 (1 – sin 2 (6х)) + 4 sin(6х) – 4 = 0 => 3 sin 2 (6х) – 4 sin(6x) + 1 = 0
Обозначим sin 6x = y, получим уравнение
3y 2 – 4y +1 =0, откуда y1 = 1, y2 = 1/3
Уравнение вида a sin(x) + b cos(x) = c
Решить уравнение 2 sin(x) + cos(x) – 2 = 0
Используя формулы \( \sin(x) = 2\sin\frac
Поделив это уравнение на \( \cos^2 \frac
Обозначая \( \text
В общем случае уравнения вида a sin(x) + b cos(x) = c, при условиях \( a \neq 0, \; b \neq 0, \; c \neq 0, \; c^2 \leqslant b^2+c^2 \) можно решить методом введения вспомогательного угла.
Разделим обе части этого уравнения на \( \sqrt \):
Решить уравнение 4 sin(x) + 3 cos(x) = 5
Здесь a = 4, b = 3, \( \sqrt = 5 \). Поделим обе части уравнения на 5:
Уравнения, решаемые разложением левой части на множители
Многие тригонометрические уравнения, правая часть которых равна нулю, решаются разложением их левой части на множители.
Решить уравнение sin(2х) – sin(x) = 0
Используя формулу синуса двойного аргумента, запишем уравнепие в виде 2 sin(x) cos(x) – sin(x) = 0. Вынося общий множитель sin(x) за скобки, получаем sin(x) (2 cos x – 1) = 0
Решить уравнение cos(3х) cos(x) = cos(2x)
cos(2х) = cos (3х – х) = cos(3х) cos(x) + sin(3х) sin(x), поэтому уравнение примет вид sin(x) sin(3х) = 0
Решить уравнение 6 sin 2 (x) + 2 sin 2 (2x) = 5
Выразим sin 2 (x) через cos(2x)
Так как cos(2x) = cos 2 (x) – sin 2 (x), то
cos(2x) = 1 – sin 2 (x) – sin 2 (x), cos(2x) = 1 – 2 sin 2 (x), откуда
sin 2 (x) = 1/2 (1 – cos(2x))
Поэтому исходное уравнение можно записать так:
3(1 – cos(2x)) + 2 (1 – cos 2 (2х)) = 5
2 cos 2 (2х) + 3 cos(2х) = 0
cos(2х) (2 cos(2x) + 3) = 0
Решение задачи 13. Вариант 282
а) Решите уравнение \( sin2x+\sqrt<2cosx-2cos^3x>=0 \)
б) Укажите корни этого уравнения, принадлежащие отрезку [-pi,-pi/6]
ОДЗ: \( sin2x≤0 \) — это 2 и 4 четверть на тригонометрической окружности
Возведем обе части в квадрат
Пусть \( cosx=t \) , где \( -1≤t≤1 \)
Делаем обратную замену
\( cosx=-1 \) значит \( x=\pi+2 \pi n \)
\( cosx=0 \) значит \( x=\frac<\pi ><2>+\pi n \)
\( cosx=1 \) значит \( x=2 \pi n \)
\( cosx=0,5 \) значит \( x=±\frac<\pi ><3>+2\pi n \)
По ОДЗ нам подходит только
\( x=\pi+2 \pi n \) , \( x=\frac<\pi ><2>+\pi n \) , \( x=2 \pi n \) , \( x=-\frac<\pi ><3>+2\pi n \)
Ответ: а) \( x=\pi+2 \pi n \) , \( x=\frac<\pi ><2>+\pi n \) , \( x=2 \pi n \) , \( x=-\frac<\pi ><3>+2\pi n \)
P.S Если понравилось решение или что-то не было понятно, то пиши комментарий ниже, мне будет приятно:)
Решение тригонометрических уравнений
Данный калькулятор предназначен для решения тригонометрических уравнений.
Тригонометрические уравнения – это уравнения, которые содержат в себе тригонометрические функции неизвестного аргумента. Под тригонометрическими функциями понимают математические функции от величины угла. Как правило, тригонометрические функции определяются как отношения сторон прямоугольного треугольника или длины определенных отрезков в единичной окружности.
К основным видам тригонометрических уравнений относят простейшие уравнения, содержащие модуль, с параметрами, с целой и дробной частью, со сложными аргументами, с обратными тригонометрическими функциями.
С помощью калькулятора можно вычислить корни тригонометрического уравнения.
Для получения полного хода решения нажимаем в ответе Step-by-step.
http://gdz-larin.ru/?p=4691
http://allcalc.ru/node/669