Ступенчатые системы линейных уравнений определение

Элементарные преобразования системы линейных уравнений.

Алгебра и теория чисел

Лекция 3

Системы линейных уравнений

План

1. Основные понятия и обозначения.

2. Элементарные преобразования системы линейных уравнений.

3. Ступенчатая матрица. Приведение матрицы к ступенчатому виду.

Литература

1. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. 1997, с. 25-48.

2. Ермаков В.И. Общий курс высшей математики. М.: Инфра — М, 2000. с. 5-22

3. Кремер Н.Ш. Высшая математика для экономистов. М.: Юнити, 2000. с. 38-56.

1. Основные понятия и обозначения. Простейшие системы двух линейных уравнений с двумя неизвестными изучаются в средней школе:

Известно, что справедлив один из следующих трех случаев: либо система имет одно решение, либо имеет бесконечно много решений, либо не имеет решений. В этом параграфе мы будем рассматривать общие системы линейных уравнений и установим это утверждение в общем случае кроме того изложим один из наиболее удобных методов решения систем линейных уравнений — метод последовательного исключения неизвестных или метод Гаусса по имени выдающегося немецкого математика К. Ф. Гаусса (1777-1855).

Определение 1.Системой m линейных уравнений с n неизвестными

(1)

где a11 ,a12 . amn — фиксированные числа (действительные, комплексные или принадлежащие некоторому полю) , называемые коэффициентами при неизвестных, b1 ,b2 . bm — фиксированные числа, называемые свободными членами.

Если все свободные члены в системе линейных уравнений равны нулю, то система линейных уравнений называется однородной.

Определение 2.Решением системы линейных уравнений (1) называется такой упорядоченный набор n чисел , при подстановке которыхв каждое из уравнений системы вместо соответственно неизвестных x1 , x2 . xn каждое из уравнений системы превращается в истинное числовое равенство.

Система называется совместной, если она имеет хотя бы одно решение, и называется несовместной, если она не имеет решений. Совместная система называется определенной, если она имеет одно решение, и называется неопределенной, если она не имеет решений.

Пусть S1 , S2 системы линейных уравнений с одним и тем же числом неизвестных, X1 , X2 — множества их решений соответственно.

Определение 3.Говорят, что система линейных уравнений S2 следствие системы S1 и S2 , если каждое решение системы S1 является решением системы S2 ,т.е. . Обозначаем .

Определение 4. Говорят, что системы S1 и S2 равносильны, если каждое решение системы S1 является решением системы S2 и каждое решение системы S2 является решением системы S1 , т.е. . Обозначаем .

Отношение следования и равносильности обладают следующими свойствами.

1. Если и , то (транзитивность).

Действительно, если и , то по определению 3 и Отсюда по свойству включения и по определению .

2. (рефлексивность).

3. Если , то — (симметричность).

4. Если и , то — (транзитивность).

Свойства 2, 3, 4 доказываются аналогично.

Элементарные преобразования системы линейных уравнений.

Определение 5. Элементарными преобразованиями системы линейных уравнений называются ее следующие преобразования:

1) перестановка любых двух уравнений местами;

2) умножение обеих частей одного уравнения на любое число ;

3) прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число k ;

(при этом все остальные уравнения остаются неизменными).

Нулевым уравнением называем уравнение следующего вида:

.

Теорема 1. Любая конечная последовательность элементарных преобразований и преобразование вычеркивание нулевого уравнения переводит одну систему линейных уравнений в равносильную ей другую систему линейных уравнений.

Доказательство.В силу свойства 4 предыдущего пункта достаточно доказать теорему для каждого преобразования отдельно.

1. При перестановке уравнений в системе местами сами уравнения неизменяются, поэтому по определению полученная система равносильная первоначальной .

2. В силу первой части доказательства достаточно доказать утверждение для первого уравнения. Умножим первое уравнение системы (1) на число , получим систему

(2)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (2) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеет место верное числовое равенство:

. (3)

Умножая его на число k,получим верное числовое равенство:

, (4)

т.о. устанавливаем, что решение системы (2).

Обратно, если решение системы (2), то числа удовлетворяют всем уравнениям системы (2). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (2), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (2), то справедливо числовое равенство (4). Разделив обе его части на число ,получим числовое равенство (3) и доказываем, что решение системы (1).

Отсюда по определению 4 система (1) равносильна системе (2).

3. В силу первой части доказательства достаточно доказать утверждение для первого и второго уравнения системы . Прибавим к обеим частям первому уравнению системы соответствующие части второго умноженные на число k , получим систему

(5)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (5) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеют место верные числовые равенства:

, (6)

. (7)

Прибавляя почленно к первому равенству второе, умноженное на число k получим верное числовое равенство:

. (8)

Обратно, если решение системы (5), то числа удовлетворяют всем уравнениям системы (5). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (5), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (5), то справедливо числовое равенство (8). Вычитая из обеих его частей соответствующие части равенства (7) умноженные на число k получим числовое равенство (6).

Отсюда по определению 4 система (1) равносильна системе (5).

4. Так как нулевому уравнению удовлетворяет любой упорядоченный набор из n чисел, то при вычеркивании нулевого уравнения в системе получим систему равносильную исходной.

Ступенчатая матрица.

Определение 6.Матрицей размерности называется прямоугольная таблица

содержащая mn чисел, расположенных в m строк и n столбцов, числа называются элементами матрицы. Если , то матрица называется квадратной матрицей порядка m . Если все элементы матрицы равны нулю, то матрица называется нулевой матрицей. Элементы aii называются элементами главной диагонали.

Определение 7. Матрицей ступенчатого вида называется такая матрица, которая обладает свойствами:

1) в каждой строке матрицы имеется неравный нулю элемент;

2) в каждой строке матрицы, начиная со второй, первый слева неравный нулю элемент расположен правее первого слева неравного нулю элемента предыдущей строки матрицы.

Матрицу ступенчатого вида называют также трапециидальной матрицей, а квадратную матрицу ступенчатого вида называют треугольной матрицей. Ниже показаны две не ступенчатые матрицы и три ступенчатые матрицы (последняя матрица треугольная).

, , , , .

Определение 8. Элементарными преобразованиями строк матрицы называются следующие ее преобразования:

1) перестановка любых двух строк матрицы местами;

2) умножение одной строки матрицы на любое число ;

3) прибавление к одной строке матрицы другой ее строки умноженной на любое число k ;

(при этом все остальные строки матрицы остаются неизменными).

Аналогично можно рассматривать элементарные преобразования столбцов матрицы.

Теорема 2. Любую ненулевую матрицу конечным числом элементарных преобразований и преобразований вычеркивания нулевой строки можно привести к матрице ступенчатого вида.

Доказательство.Доказательство проводим методом математической индукции по числу m строк матрицы. Для m=1 утверждение теоремы справедливо, так как ненулевая однострочная матрица по определению имеет ступенчатый вид.

Предположим, что утверждение теоремы доказано для матриц, имеющих m-1 строку и докажем его для матриц, в которых содержится m строк. Пусть первый слева отличный от нуля столбец данной матрицы имеет номер k , так как матрица ненулевая, то такой столбец найдется, и матрица имеет вид:

.

Можем считать, что элемент , в противном случае строки матрицы можно переставить. Прибавим ко второй строке матрицы первую, умноженную на число , к третьей — первую , умноженную на и т.д. , к m-й — первую, умноженную на . После этих преобразований матрица примет вид:

. (9)

Рассмотрим матрицу, состоящую из последних m-1 строк матрицы (9):

. 10)

Если матрица (10) нулевая, то все строки в матрице (9) кроме первой нулевые. Вычеркивая их, приходим к матрице ступенчатого вида. Если матрица (10) ненулевая, то по индуктивному предположению конечным число элементарных преобразований и преобразований вычеркивания нулевой строки может быть приведена к матрице ступенчатого вида: ,

где элементы и не равны нулю. Тогда соответствующими преобразованиями строк матрица (9) преобразуется в матрицу ступенчатого вида:

; (11)

элементы , . не равны нулю. Теорема доказана.

4. Метод Гаусса. Системе линейных уравнений (1) соответствуют три матриц

, .

Первая матрица называется матрицей системы, вторая — расширенной или присойдиненной матрицей системы, третья — столбцом свободных членов.

Система линейных уравнений называется системой ступенчатого вида, если расширенная матрица системы есть матрица ступенчатого вида. Неизвестные с коэффициентами неравными нулю, которые стоят первыми в уравнениях системы ступенчатого вида называются главными неизвестными, а остальные неизвестные называются свободными.

Линейное уравнение, в котором все коэффициенты равны нулю, а свободный член не равен нулю, т.е. уравнение вида:

,

не имеет решений. Действительно, если — решение этого уравнения, то получим противоречие с условием. Такое уравнение называем противоречивым.

Пусть не все уравнения системы (1) нулевые. Тогда и расширенная матрица системы (1) ненулевая. По теореме 2 ее можно конечным числом элементарных преобразований и преобразований выбрасывания нулевой строки можно привести к матрице ступенчатого вида. Полученной матрице соответствует система линейных уравнений ступенчатого вида. Этим преобразованиям расширенной матрицы системы (1) соответствуют такие же преобразования системы линейных уравнений (1). По теореме 1 они переводят систему (1) в равносильную систему линейных уравнений, которая будет являются системой ступенчатого вида.

Таким образом мы доказали первую часть следующей теоремы.

Теорема 3.Любую систему линейных уравнений , содержащую ненулевое уравнение конечным числом элементарных преобразований и преобразований вычеркивания нулевого уравнения можно привести к равносильной ей системе ступенчатого вида. При этом возможны следующие три случая.

1. Если в полученной системе линейных уравнений ступенчатого вида есть противоречивое уравнение, то данная система не имеет решений.

2. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе равно числу неизвестных, то данная система имеет единственное решение.

3. Если в полученной системе линейных уравнений ступенчатого вида нет противоречивого уравнения и число уравнений в полученной системе меньше числа неизвестных, то данная система имеет бесконечно много решение.

Доказательство.Пусть дана система (1), содержащая ненулевое уравнение. По выше доказанному, она конечным числом элементарных преобразований она может быть преобразована к равносильной ей системе уравнений ступенчатого вида. Возможны случаи.

В полученной системе ступенчатого вида есть противоречивое уравнение. Тогда ни один набор чисел не удовлетворяет системе, и система (1) не имеет решений.

В полученной системе ступенчатого вида нет противоречивого уравнения. Тогда в каждом из уравнений системы ступенчатого вида содержится главное неизвестное. Отсюда получаем, что число главных неизвестных, а тем более число всех неизвестных, не менее числа уравнений в системе ступенчатого вида. Тогда возможны под случаи:

В системе ступенчатого вида число уравнений равно числу неизвестных, т. е. система имеет вид:

(12)

где Все неизвестные в системе являются главными. Из последнего уравнения находим единственное значение для неизвестного : . Подставляя найденное значение в предпоследнее уравнение, находим для неизвестного единственное значение и т.д. Наконец из первого уравнения по найденным значениям неизвестных из первого уравнения находим единственное значение неизвестного . Таким образом, система (12), а поэтому и система (1) имеет единственное решение.

В системе ступенчатого вида число уравнений меньше числа неизвестных. В этом случае матрица полученной системы имеет вид (11), а

систему можно записать в виде:

(13)

где В этой системе r главных неизвестных , все остальные свободные (в системе они обзначены точками. Возьмем для свободных неизвестных произвольные значения. Тогда значения главных неизвестных найдутся однозначно из системы (13). Так как главные неизвестные можно выбрать бесконечным числом способов, то получим, что система (13), а поэтому и система (1) имеет бесконечно много решений.

Следствие.Если в системе однородных уравнений число неизвестных больше числа уравнений, то система имеет бесконечно много решений.

Действительно, система однородных уравнений всегда имеет нулевое решение , и при приведении ее к ступенчатому виду всегда получим систему, в которой число неизвестных больше числа уравнений.

Метод исследования и решения систем линейных уравнений, изложенный в доказательстве теорем 3 называется методом Гаусса.

Пример 1.Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

.

Составим по полученной матрице ступенчатого вида систему линейных уравнений ступенчатого вида:

В полученной системе число уравнений равно числу неизвестных и полученная система имеет единственное решение, которое двигаясь вверх последовательно находим:

Решение системы .

Пример 2.Решить систему

Составим расширенную матрицу системы и приведем ее к ступенчатому виду:

Соответствующая система имеет противоречивое уравнение. Поэтому данная система не имеет решений.

Cтупенчатые системы линейных уравнений и метод Гаусса

Исследование ступенчатых систем линейных уравнений

Лемма 3.6.1. Однородная система линейных уравнений всегда совместна.

Доказательство . Решением системы является нулевая строчка .

Лемма 3.6.2. Если система линейных уравнений содержит уравнение

Доказательство . Для любой строчки .

Замечание 3.6.3. Если матрица коэффициентов системы линейных уравнений нулевая (т. е. все коэффициенты равны нулю), то ее совместность равносильна тому, что все свободные члены нулевые (при этом X=K n ).

По ненулевой ступенчатой матрице переменные x1. xn разобьем на две группы: главные , «проходящие» через уголки ступенек (их r штук), и свободные — все остальные n-r переменных (их может и не быть совсем при r=n ).

Замечание 3.6.4. Если в ступенчатой системе линейных уравнений нет «экзотических» уравнений (т. е. если r=m или r и ), то для любого набора значений для свободных неизвестных существует (и единственный) набор значений для главных неизвестных и эти наборы дают в совокупности решение системы линейных уравнений .

Доказательство . Так как значения для свободных неизвестных заданы, то, рассматривая r -е уравнение и перенося в правую часть уравнения члены со значениями свободных неизвестных, расположенных правее места (r,t) (если они есть), получаем уравнение (см. (3.2))

Теорема 3.6.5 (критерий совместности системы линейных уравнений по ее ступенчатому виду).

  1. Система линейных уравнений (aij|bi) из m уравнений с неизвестными x1. xn совместна тогда и только тогда, когда в ее ступенчатом виде нет «экзотических» уравнений (т. е. или r=m , или r и ).
  2. Для совместной системы свободным неизвестным можно придавать произвольные значения, при этом главные неизвестные однозначно определяются (при заданных значениях свободных неизвестных), тем самым мы получаем все решения системы линейных уравнений.

Доказательство . Отметим, что исходная система и ее ступенчатая системы эквивалентны.

1) а) Ясно, что совместная система не может содержать «экзотическое» уравнение (лемма 3.6.2). Таким образом, при первом появлении «экзотического» уравнения в методе Гаусса процесс надо остановить: система несовместна.

б) Если в ступенчатом виде нет «экзотических» уравнений, то утверждение следует из леммы 3.6.4.

2) Алгоритм нахождения всех решений в случае отсутствия «экзотических» уравнений рассмотрен в лемме 3.6.4.

Следствие 3.6.6. Система линейных уравнений несовместна тогда и только тогда, когда в ее ступенчатом виде найдется «экзотическое» уравнение.

Теорема 3.6.7 (критерий определенности системы линейных уравнений по ее ступенчатому виду). Система линейных уравнений является определенной тогда и только тогда, когда в ее ступенчатом виде:

  1. нет «экзотических» уравнений(критерий совместности);
  2. r=n (т. е. все неизвестные главные, другим словами — отсутствуют свободные неизвестные).
  1. При условии совместности, если r , т. е. имеется хотя бы одно свободное неизвестное, то ему можно придать как минимум два различных значения из поля K . После дополнения значений свободных переменных значениями главных переменных до решения системы мы получаем заведомо два различных решения системы, т. е. |X|>1 , система является неопределенной.
  2. Если же при условии совместности r=n , т. е. нет свободных неизвестных, то главные неизвестные определяются в методе Гаусса однозначно (через свободные члены системы), таким образом, система линейных уравнений является определенной.

Упражнение 3.6.8. Процесс приведения к ступенчатому виду можно продолжить на расширенную матрицу системы (aij|bi) . Покажите, что система совместна тогда и только тогда, когда ступенчатый вид расширенной матрицы системы (aijbi) содержит столько же ненулевых строк, сколько и ступенчатый вид матрицы (aij) (все лидеры строк ступенчатого вида расширенной матрицы находятся среди столбцов матрицы коэффициентов (aij) ).

Замечание 3.6.9. Любая ненулевая матрица с помощью элементарных преобразований строк 1-го, 2-го и 3-го типа может быть приведена к главному ступенчатому виду. Действительно, вначале приведем матрицу A к ступенчатому виду. С помощью элементарных преобразований 3-го типа сделаем все лидеры ненулевых строк , , равными единице. После этого, применяя элементарные преобразования строк 1-го типа, добьемся того, что в lr -м столбце единственный ненулевой элемент — это , затем аналогично добьемся с использованием элементарных преобразований строк 1-го типа того, что единственный ненулевой элемент в lr-1 -м столбце — это , в l1 -м столбце — это (эта процедура часто называется обратным ходом метода Гаусса). Таким образом, мы привели матрицу A к главному ступенчатому виду. Позже (см. 9.5.1) будет доказано, что главный ступенчатый вид матрицы определен однозначно.

Если совместная система линейных уравнений (в частности, однородная система) приведена к главному ступенчатому виду, то мы сразу (без последовательной подстановки уже полученных выражений в предыдущие уравнения) получаем единственное выражение главных неизвестных через свободные: l -е уравнение ( ) главного ступенчатого вида имеет вид

В частном случае, при r=n , главный ступенчатый вид определенной системы линейных уравнений имеет форму

Матрицы: метод Гаусса. Вычисление матрицы методом Гаусса: примеры

Линейная алгебра, которая преподается в вузах на разных специальностях, объединяет немало сложных тем. Одни из них связаны с матрицами, а также с решением систем линейных уравнений методами Гаусса и Гаусса – Жордана. Не всем студентам удается понять эти темы, алгоритмы решения разных задач. Давайте вместе разберемся в матрицах и методах Гаусса и Гаусса – Жордана.

Основные понятия

Под матрицей в линейной алгебре понимается прямоугольный массив элементов (таблица). Ниже представлены наборы элементов, заключенные в круглые скобки. Это и есть матрицы. Из приведенного примера видно, что элементами в прямоугольных массивах являются не только числа. Матрица может состоять из математических функций, алгебраических символов.

Вам будет интересно: Закон Максвелла. Распределение Максвелла по скоростям

Для того чтобы разобраться с некоторыми понятиями, составим матрицу A из элементов aij. Индексы являются не просто буквами: i – это номер строки в таблице, а j – это номер столбца, в области пересечения которых располагается элемент aij. Итак, мы видим, что у нас получилась матрица из таких элементов, как a11, a21, a12, a22 и т. д. Буквой n мы обозначили число столбцов, а буквой m – число строк. Символ m × n обозначает размерность матрицы. Это то понятие, которое определяет число строк и столбцов в прямоугольном массиве элементов.

Необязательно в матрице должно быть несколько столбцов и строк. При размерности 1 × n массив элементов является однострочным, а при размерности m × 1 – одностолбцовым. При равенстве числа строчек и числа столбцов матрицу именуют квадратной. У каждой квадратной матрицы есть определитель (det A). Под этим термином понимается число, которое ставится в соответствие матрице A.

Еще несколько важных понятий, которые нужно запомнить для успешного решения матриц, – это главная и побочная диагонали. Под главной диагональю матрицы понимается та диагональ, которая идет вниз в правый угол таблицы из левого угла сверху. Побочная диагональ идет в правый угол вверх из левого угла снизу.

Ступенчатый вид матрицы

Взгляните на картинку, которая представлена ниже. На ней вы увидите матрицу и схему. Разберемся сначала с матрицей. В линейной алгебре матрица подобного вида называется ступенчатой. Ей присуще одно свойство: если aij является в i-й строке первым ненулевым элементом, то все другие элементы из матрицы, стоящие ниже и левее aij, являются нулевыми (т. е. все те элементы, которым можно дать буквенное обозначение akl, где k>i, а l Понравилась статья? Поделись с друзьями:


источники:

http://intuit.ru/studies/courses/1009/197/lecture/5126

http://1ku.ru/obrazovanie/56526-matricy-metod-gaussa-vychislenie-matricy-metodom-gaussa-primery/