Цели урока по теме неполные квадратные уравнения

Разработка урока алгебры в 8-м классе по теме “Неполные квадратные уравнения”

Разделы: Математика

Тип урока: Урок изучения новой темы

Образовательные:

  • выработать алгоритм решения неполного квадратного уравнения;
  • научить детей применять его при решении уравнения;
  • продолжить работу над усвоением названий коэффициентов и выработке умения правильно находить каждый коэффициент в записи квадратного уравнения.

Развивающие:

  • развивать умения сравнивать, анализировать, обобщать;
  • работать над освоением соответствующей терминологии;
  • развитие познавательных интересов.

Воспитательные:

  • воспитание культуры общения;
  • воспитание взаимопомощи, трудолюбия, умению оценивать себя.

Оборудование:

  • схема решения уравнения х 2 =а;
  • магниты.

Ход урока

I. Организационный момент

Учитель зачитывает высказывание: “Уравнение – это золотой ключ, открывающий все математические сезамы”. [4]

II. Актуализация опорных знаний

На прошлом уроке мы познакомились с определением квадратного уравнения.

Вопросы к учащимся:

Какие уравнения называются квадратными?

[ах 2 + вх + с = 0, где а0]

Почему налагается условие а0?

[в противном случае уравнение не будет квадратным]

На первой откидной доске записаны семь квадратных уравнений

ах 2 + вх + с = о, а0
3х 2 +7х-6=0
-х 2 -6х+1,4=0
1/2 х 2 -х+1=0
4х 2 +3=0
-3х 2 +15=0
4х 2 +3х=0
9х 2 =0

Вопросы к учащимся: (устно)

  • Укажите в квадратных уравнениях его коэффициенты.
  • Называя коэффициенты в каждом уравнении, что вы заметили?

Следует обобщение, сделанное вместе с учениками. Существуют такие квадратные уравнения, в которых коэффициенты в или с равны 0. Как называют такие уравнения? (Неполные. Дети могут догадаться по названию темы.)

Это и есть тема нашего урока.

III. Учащиеся записывают в тетрадях число, тему урока. Учитель сообщает цели и структуру урока.

Устная работа. На второй откидной доске записаны 6 квадратных уравнений:

х 2 =16
х 2 =5
х 2 =-3
х 2 =0
х 2 +9=0
(х+2) 2 =36

Решить уравнения вида х?=а, в тетради записать только ответы. Один ученик работает на обратной стороне первой откидной доски. Проверка проводится через 1-2 минуты по контрольной доске. Ученик проговаривает ответы, учащиеся отмечают правильные решения “+”, неправильные – “-”. Каждый ученик оценивает свою работу сам. После повторения следует с учащимися сделать вывод о решении неполного квадратного уравнения вида х?=а, одновременно прикрепляя к доске магнитами схему

х 2 =а
а>0, х 1,2 = ±а
а=0, х=0
а

V. Изучение нового материала

Мы определили, что среди квадратных уравнений есть, неполные квадратные уравнения. Дадим четкое определение. Воспользуемся учебником на странице 105, п. 19.

Исходя из определения, какие три вида неполных квадратных уравнений можно выделить?

ах 2 +их+с=0, а0

III. ах 2 =0, в=0, с=0

(Учащиеся диктуют, учитель записывает на второй половине доски 3 вида уравнений).

Наша задача научиться их решать. Построим таблицу и занесем каждое из выделенных уравнений в колонку. Дадим название таблице “Виды неполных квадратных уравнений и способы их решения”.

В качестве примеров разберем уравнения 4-7 из Таблицы 1.

Для заполнения таблицы можно пригласить к доске четырех учащихся поочередно. Совместно с учениками заполняется таблица и разбираются основные способы решения неполных квадратных уравнений. Макет незаполненной таблицы приготовлен заранее на первой половине доски.

“Виды неполных квадратных уравнений и способы их решения”

Условиеа0, в=0а0, с=0а0, в=0, с=0
Вид уравнения1) ах 2 +с=02) ах 2 +вх=03) ах 2 =0
Примеры4х 2 +3=0-3х 2 +15=04х 2 +3х=09х 2 =0
Решение:4х 2 =-3
х 2 =-3:4
х 2 =-3/4

корней нет, т. к. –3/4 2 =-15
х 2 =-15:(-3)
х 2 =5
х1,2=±5х(4х+3)=0
х1=0 или
4х+3=0
4х=-3
х=-3/490
х 2 =0
х=0Вывод:Корней нетДва корняВсегда два корняВсегда один корень

VI. Закрепление материала

Сейчас мы решали уравнения, в которых правая часть равна 0. А как решать уравнения, в которых и правая, и левая части являются многочленами первой и второй степени?

Выполняя необходимые преобразования, получаем

VII. Историческая справка

Выступает ученик по теме “Из истории квадратных уравнений”.

Для учеников, увлекающихся математикой, звучит задача, облеченная в стихотворную форму, из сочинения индийского математика Бхаскары [2]:

“Обезьянок резвых стая
Всласть поевши, развлекалась.
Их в квадрате часть восьмая
На поляне забавлялась.
А 12 по лианам …
Стали прыгать, повисая.
Сколько было обезьянок,
Ты скажи мне, в этой стае?”

VIII. Задание на дом

1. Учащимся раздаются индивидуальные карточки с 8 заданиями.

оценка “3” – 4-5 уравнений;
оценка “4” – 6 уравнений;
оценка “5” – 7-8 уравнений.

Уравнения для домашней работы взяты из сборника заданий для проведения письменного экзамена по алгебре за курс основной школы (М.: Дрофа, 9 класс).

Для удобства проверки можно составить 4 варианта.

Образец: карточка №1

х 2 -9=0
10х 2 +5х=0
х 2 -10х=0
3х 2 -75=0
2х 2 -14=0
х 2 +25=0
2х 2 +3=3-7х
х 2 -5=(х+5)(2х-1)

Для сильных учащихся составить квадратное уравнение по условию задачи Бхаскары.

IX. Подведение итогов урока. Выставление оценок.

Материал этой разработки предназначен для работы в классах с различными профилями.

Список литературы:

  1. Макарычев Ю. Н. , Миндюк Н. Г. и др. Алгебра 8. – М.: Просвещение, 1996.
  2. Барсуков А. Н. Алгебра 6-8 кл. – М.: Просвещение, 1970.
  3. Кузнецова Л. В. , Бунимович Е. А. и др. Сборник заданий для проведения письменного экзамена по алгебре за курс основной школы, 9 класс. – М.: Дрофа, 2002.
  4. Ульянова Т. Статья “Решение квадратных уравнений”, газета “Математика”, №35/2004.

Конспект урока “Неполные квадратные уравнения”
план-конспект урока по алгебре (8 класс) по теме

Тема «Неполные квадратные уравнения»

Цель урока: организация деятельности учащихся по усвоению понятий квадратного уравнения, неполного квадратного уравнения, способов решения неполных квадратных уравнений;

Задачи урока:

образовательные: создать условия для активной познавательной деятельности учащихся по приобретению новых знаний и расширению понятийной базы за счет включения в нее новых элементов, таких как квадратные уравнения и неполные квадратные уравнения; обеспечить усвоение способов решения неполных квадратных уравнений;

развивающие: формировать умения классифицировать уравнения и решать неполные квадратные уравнения; стимулировать познавательную деятельность учащихся; развивать интерес к предмету, четко формулировать свои мысли, применять свои знания на практике;

воспитательные: воспитывать умение работать коллективно и самостоятельно (в зависимости от задания), воспитывать дисциплинированность, формирование у учащихся навыков самооценки.

Скачать:

ВложениеРазмер
urok_po_teme_nepolnye_kvadr._uravneniya_8_kl.docx27.21 КБ
tehnologicheskaya_karta_nepolnye_kvad._uravneniya.doc45.5 КБ

Предварительный просмотр:

Урок по теме «Неполные квадратные уравнения» разработан в рамках проведения семинара по системно-деятельностному подходу

Предмет: алгебра . Учебник «Алгебра – 8» Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б Суворова; под. ред. С. А. Теляковского.-13-е изд. – М.: Просвещение, ОАО «Московские учебники», 2010

Учитель математики: Башурова И.Н.

Место урока в данной теме: 1-ый

Формы работы: коллективная, фронтальная, индивидуальная

Тип урока: урок изучения нового материала

Тема «Неполные квадратные уравнения»

Цель урока : организация деятельности учащихся по усвоению понятий квадратного уравнения, неполного квадратного уравнения, способов решения неполных квадратных уравнений;

образовательные : создать условия для активной познавательной деятельности учащихся по приобретению новых знаний и расширению понятийной базы за счет включения в нее новых элементов, таких как квадратные уравнения и неполные квадратные уравнения; обеспечить усвоение способов решения неполных квадратных уравнений;

развивающие : формировать умения классифицировать уравнения и решать неполные квадратные уравнения; стимулировать познавательную деятельность учащихся; развивать интерес к предмету, четко формулировать свои мысли, применять свои знания на практике;

воспитательные : воспитывать умение работать коллективно и самостоятельно (в зависимости от задания), воспитывать дисциплинированность, формирование у учащихся навыков самооценки.

  1. Мотивация учебной деятельности «Настроимся на урок!»
  2. Актуализация опорных знаний
  3. Постановка проблемы, после чего учащиеся должны сформулировать тему урока, цель урока.
  4. Изучение нового материала и первичное закрепление
  5. Физкультминутка
  6. Выполнение тренировочных упражнений
  7. Итог урока (в виде проверочной работы)
  8. Рефлексия
  9. Домашнее задание
  1. Мотивация учебной деятельности «Настроимся на урок!»

-Здравствуйте, ребята! Математику не зря называют «Царицей наук». Одно из замечательных свойств математики – любознательность. Давайте постараемся сегодня проявить свою любознательность на уроке.

  1. Актуализация опорных знаний (слайд 1)

1. Представить выражение в виде одночлена:

2. Вычислить: а) ; б) ;

3. Решить уравнения : а) ; б) ;

Учитель: по словам Лейбница, «Кто хочет ограничиться настоящим без знания прошлого, тот никогда его не поймет». Рассказ учителя истории появления первых упоминаний о квадратных уравнениях. (слайд 2)

Впервые квадратное уравнение сумели решить математики Древнего Египта. В одном из математических папирусов содержится задача: «Найти стороны поля, имеющего форму прямоугольника, если его площадь 12, а длины равны ширине». Рассмотрим её

Пусть х- длина поля. Тогда – его ширина, S = – площадь. Получилось квадратное уравнение: . В папирусе дано правило для его решения: «Раздели 12 на ».

Итак, «Длина поля равна 4» – сказано в папирусе. Прошли тысячелетия, в алгебру вошли отрицательные числа. Решая уравнение , мы получаем два корня . Разумеется, в египетской задаче и мы приняли бы х = 4, т.к. длина поля не может быть отрицательным числом.

Задачи на квадратные уравнения встречаются уже в 449 году. В древней Индии были распространены публичные соревнования в решении трудных задач. Часто они были составлены в стихотворной форме. Вот одна из задач знаменитого индийского математика XII века Бхаскары звучит так: (слайд 3)

Обезьянок резвых стая,

Власть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась,

А двенадцать по лианам

Стали прыгать, повисая…

Сколько ж было обезьянок,

Ты скажи мне в этой стае?

(решение данной задачи рассмотреть на следующих уроках)

После рассмотрения данных задач, не решая их (учащиеся пока не умеют этого делать), учащиеся пытаются сформулировать тему и цель урока. (слайд 4)

Открыли тетради, записали тему урока.

  1. Изучение нового материала и первичное закрепление материала

Мы с вами начали изучать большой раздел «Квадратные уравнения». (слайд 5)

  1. Квадратным уравнением называется уравнение вида , где х – переменная; а, в, с – некоторые числа, причем а .

Коэффициенты а, в, с называют так: а –первый коэффициент, в – второй коэффициент, с – свободный член.

Примеры квадратных уравнений №512 стр.114 учебника.

  1. Квадратное уравнение называют неполным, если хотя бы один из коэффициентов а, в или с, равен нулю. Примеры в№512 д),е).
  2. Квадратное уравнение, в котором первый коэффициент равен 1, называют приведенным квадратным уравнением. Примеры в №513 стр. 114 учебника.
  3. Способы решения неполных квадратных уравнений:

Пример 1 (из египетской задачи)

По смыслу задачи принимаем во внимание только

; если , то уравнение имеет два корня;

если , то уравнение не имеет корней.

Здесь можно сделать вывод (вместе с учащимися): если коэффициенты а и с имеют разные знаки, то уравнение имеет 2 корня, если же коэффициенты а и с имеют одинаковые знаки, то уравнение корней не имеет.

х = 0 или ах +в =о

х =-в/а Уравнения вида всегда имеет 2 корня;

Пример 3 . , х = 0

, х = 0 – единственный корень (слайд 6)

Очень важно развивать воображение учащихся. С этой целью выполняется следующее упражнение. Много ль надо нам, ребята,

Для умелых наших рук?

Нарисуем два квадрата,

А на них огромный круг,

А потом еще кружочек,

Вот и вышел очень, очень

Развеселый чудачок (дети в воздухе рисуют геометрические фигуры)

  1. Выполнение тренировочных упражнений

№515 (а, в, д), №517 (а, в, д) стр. 114 учебника

  1. Итог урока (в виде проверочной работы) (слайд 8)

Конспект урока “Неполные квадратные уравнения” 8 класс

Урок по теме: «Неполные квадратные уравнения»

(8 класс, алгебра).

Цели:
образовательные отработка навыков устного счёта, ввод понятий: квадратное уравнение, приведённое квадратное уравнение, неприведённое квадратное уравнение, полное квадратное уравнение, неполное квадратное уравнение, корень квадратного уравнения, решение неполного квадратного уравнения. воспитательные воспитание трудолюбия, аккуратности, уважительного отношения к старшим и друг к другу, честности, взаимопомощи; расширение кругозора. развивающие развитие памяти, внимания, логики, математического мышления, умения правильно и последовательно рассуждать.

Просмотр содержимого документа
«Конспект урока “Неполные квадратные уравнения” 8 класс»

Урок по алгебре

«Неполные квадратные уравнения»

Учитель МБОУ СОШ № 1 имени А.В.Суворова

Урок по теме: «Неполные квадратные уравнения»

Учитель: Солодовникова Ж.В.

Цели:
образовательные отработка навыков устного счёта, ввод понятий: квадратное уравнение, приведённое квадратное уравнение, неприведённое квадратное уравнение, полное квадратное уравнение, неполное квадратное уравнение, корень квадратного уравнения, решение неполного квадратного уравнения. воспитательные воспитание трудолюбия, аккуратности, уважительного отношения к старшим и друг к другу, честности, взаимопомощи; расширение кругозора. развивающие развитие памяти, внимания, логики, математического мышления, умения правильно и последовательно рассуждать.

Оргмомент проверка готовности к уроку, сообщение целей урока.

Устный счёт.
Вычислить: 1) +3 (48)

2) + (14)

3) × (75)

4) -0,03 (-3)

5) (-5)

6) – ( )² ( – 34)

2. Изложение нового материала.

1) Актуализация опорных знаний.

а) На доске записаны уравнения:

4) (3x – 1) 2 – 1 = 0

Вопрос: “Какие из предложенных уравнений вы сможете решить на данный момент?” (учащиеся выбирают уравнения, повторяют ход решения выбранных кравнений)

Уравнение вида ax 2 + bx + c = 0, где a, b, c – некоторые действительные числа, х-переменная, причём а 0 называется квадратным уравнением.

Вводится название коэффициентов уравнения:

а – первый (старший коэффициент)

b – второй коэффициент

с – свободный член

Почему уравнение называется квадратным, почему а не равно нулю?

2) Проверка уровня усвоения теоретического материала

Укажите среди записанных на доске квадратные уравнения.

Чему равен первый и второй коэффициенты уравнения, его свободный член?
3) Ввести понятие приведённого квадратного уравнения.

Квадратное уравнение, в котором коэффициент при х² равен 1, называют приведённым квадратным уравнением.

Назовите в задании, записанном на доске (пример 1) приведённые квадратные уравнения.

4) Ввести понятие полного и неполного квадратного уравнения.

Кв. уравнение полное, если все три слагаемых присутствуют, неполное, если в уравнении присутствует не все три слагаемых.

5) На доске записаны уравнения:

Приведённое кв. уравнение:

Неприведённое кв. уравнение:

Полное кв. уравнение:

Неполное кв. уравнение:

6) Математический диктант:

1. Составить квадратное уравнение

1вар. Старший коэффициент равен 8, коэффициент при х равен 5 , свободный член равен 1.

2вар. Старший коэффициент равен -12, коэффициент при х равен 3.

1вар. Старший коэффициент равен 1, свободный член равен 4.

2вар. Старший коэффициент равен 9, коэффициент при х равен -2, свободный член равен 3.

1вар. Старший коэффициент равен 1, коэффициент при х равен -1.

2вар. Старший коэффициент равен -1, коэффициент при х равен 1.

Сидящие за одной партой меняются карточками и выполняют взаимопроверку. За 3 верно записанных уравнения – «5», за 2 – «4», за 1 – «3», ни одного –«2»

3.Учитель: Мы изучили квадратные уравнения, неплохо знать и узнавать квадратные уравнения, но ещё лучше научиться их решать. Переходим к решению квадратных уравнений. Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего нового изобретать. Рассмотрим несколько таких уравнений.

7. Составление алгоритма решения неполных квадратных уравнений.

В ходе беседы с учениками, путем рассуждений, опираясь на имеющиеся знания и опыт решения уравнений первой степени, не используя учебник, вместе с классом выводится алгоритм решения неполных квадратных уравнений на конкретных примерах. В ходе этой работы в тетрадях учеников появляется следующая запись, которой они будут пользоваться как опорой.

х² = – 3 Ответ: корней нет.

Данные примеры показывают, как решаются неполные квадратные уравнения. Внимательно посмотрите на ответы и скажите, сколько корней может иметь квадратное уравнение? Почему не больше двух?.

К доске вызываются 2 человека, которым необходимо решить квадратные уравнения.

2х 2 – 8х = 0 -2х 2 + 8 = 0

-х 2 + 5х =0 3х² +10 = 0

х 2 – 16 = 0 5х² = 0

После этого проходит проверка решения данных уравнений.

3. Подведение итогов.

Историческая справка
Квадратные уравнения решали в Вавилоне около 2000 лет до нашей эры, а Европа 8 лет назад отпраздновала 800летие квадратных уравнений, потому что именно в 1202 году итальянский ученый Леонард Фибоначчи изложил формулы квадратного уравнения. И лишь в 17 веке, благодаря Ньютону, Декарту и другим ученым эти формулы приняли современный вид.

4.Домашнее задание:
§21 читать, выучить определения, № 517(г-е), 521 (в,г)


источники:

http://nsportal.ru/shkola/algebra/library/2017/01/20/konspekt-uroka-nepolnye-kvadratnye-uravneniya

http://kopilkaurokov.ru/matematika/uroki/konspiekturokaniepolnyiekvadratnyieuravnieniia8klass