Уравнение плоскости заданной двумя векторами и точкой

Пункт 2. Вывод уравнения плоскости по точке и двум направляющим.

Пусть даны точка и 2 направляющих вектора ими однозначно порождается некоторый параллелограмм, а следовательно и плоскость. Одного направляющего вектора недостаточно, ведь тогда плоскость может вращаться вокруг него, то есть плоскость не будет однозначно фиксирована.

Обозначим координаты направляющих, например, так: и .

Первый способ. Можно найти нормаль к плоскости как векторное произведение 2 направляющих векторов и далее искать уравнение плоскости по точке и нормали, методом, рассмотренным в пункте 1. Но это будет решение в 2 шага.

Однако можно также получить уравнение плоскости сразу, без вычисления векторного произведения:

Второй способ.Возьмём произвольную точку . Если она принадлежит плоскости, то вектор (показан красным цветом) будет лежать в плоскости, то есть тройка векторов , образует линейно-зависимую систему (ЛЗС), то есть эти векторы не образуют параллелепипед, а лежат в одной плоскости.

Тогда смешанное произведение 0, то есть определитель, составленный из них, равен 0:

Вычисляя этот определитель, мы получим в качестве результата некоторое уравнение, содержащее x,y,z. А если начальная точка (0,0,0), то уравнение будет вычисляться с помощью такого определителя: .

Пример.Построить уравнение плоскости, проходящей через начало координат, параллельно 2 направляющим (1,2,3) и (1,1,1).

Решение. . Можем разложить по первой строке: = .

Для удобства, чтобы 1-й коэффициент был положителен, можно домножить на . Ответ: .

Замечание.Векторы можно поменять местами, и это не влияет на уравнение плоскости. Неважно, какой из них считается первым, а какой вторым. Если все миноры сменят знак, то из уравнения просто можно будет вынести коэффициент .

Замечание. Построение уравнения плоскости по трём точкам. Если дано 3 точки, достаточно взять 2 направляющих и (пусть это и будут те самые ) и затем действовать так, как сказано ранее.

Лекция № 7. 14. 10. 2016

Пункт 3. Расстояние от точки до плоскости.

Пусть дано уравнение плоскости и произвольная точка .

Возможно, она лежит в плоскости (тогда расстояние по формуле автоматически получится 0). Но в общем случае она не принадлежит плоскости. Мы не знаем, где основание перпендикуляра, более того, его и не потребуется искать.

Возьмём произвольную точку в плоскости. Сделать это просто: присвоим какие-нибудь значения 2 переменным из трёх, и вычислим третью. Например, как правило, задать x,y и вычислить z.

Итак, выбрали какую-то точку в плоскости. Отрезок между и не перпендикулярен плоскости, но его проекция на нормаль — это как раз и есть кратчайшее расстояние до плоскости (d).

= =

.

Если подставить в уравнение плоскости (в числителе) точку, лежащую в плоскости, то получим 0. В общем же случае, результат подстановки некоторой точки, не лежащей в плоскости, в уравнение плоскости, характеризует удаление от плоскости.

Пункт 4. Взаимное расположение плоскостей

Пусть даны 2 плоскости.

Если рассматривать это как систему уравнений, то видим, что 2 уравнения и 3 переменных, то есть по меньшей мере одна свободная переменная. Это означает, что если решения есть, то их бесконечно много. Это и есть все точки, принадлежащие прямой, являющейся пересечением плоскостей.

Чтобы найти пересечение, достаточно решить систему уравнений, где 2 уравнения — это и есть уравнения этих плоскостей.

Если то плоскости совпадают, так как уравнения полностью пропорциональны.

Если то плоскости параллельны. Дело в том, что если из одного уравнения вычесть кратное второму, то получим все 0 коэффициенты при x, y, z, и останется противоречивое уравнение (некая ненулевая константа = 0).

Если пропорциональность нарушена среди каких-то из первых 3 дробей, то плоскости пересекаются по прямой.

Пункт 5. Угол между плоскостями и метод его нахождения.

Можно искать как угол между нормалями (показаны красным). Их координаты известны — это и . В то же время известно, что . Тогда = . .

Прямая в пространстве.

Для прямой на плоскости и для плоскости в пространстве есть однозначно определённое направление нормали (перпендикуляра) т.к. там размерности рассматриваемых многообразий 1 и 2 (2 и 3 соответственно), то есть «не хватает» одной размерности. А для прямой в пространстве не хватает 2 размерностей (1 и 3). Это совершенно новый случай, здесь нельзя однозначно задать перпендикуляр. Есть целая плоскость, перпендикулярная прямой, то есть бесконечное число нормалей. А вот направляющий вектор однозначно определён (с точность до его длины, конечно). Это проявится в том, что мы получим другой тип уравнений.

5.2.1. Как составить уравнение плоскости
по точке и двум неколлинеарным векторам?

Конструировать уравнение будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность.

Казалось бы, плоскость можно однозначно определить с помощью двух неколлинеарных векторов. Но нет – векторы свободны и бродят по всему пространству, поэтому ещё нужна фиксированная точка:

Уравнение плоскости, которая проходит через точку параллельно неколлинеарным векторам , выражается формулой:

! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.

Принципиально ситуация выглядит так:
Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (они будут «вертеться» вокруг точки и зададут целый «пучок» плоскостей).

Задача 130

Составить уравнение плоскости по точке и неколлинеарным векторам .

Решение: искомое уравнение составим по формуле:

Определитель удобнее всего раскрыть по первому столбцу:

Раскрываем определители второго порядка:

На первом месте у нас нарисовался знак «минус», и хорошим тоном считается его убрать (точно так же, как и у общего уравнения «плоской» прямой).

Меняем у каждого слагаемого знак и проводим дальнейшие упрощения:

, сократить здесь ничего нельзя, поэтому:

Ответ:

Как проверить задание? Для проверки пока не хватает информации, но мы обязательно выполним её чуть позже. Решаем самостоятельно:

Задача 131

Составить уравнение плоскости по векторам и принадлежащей ей точке .

Кстати, если векторы коллинеарны, то и на этот случай есть корректный ответ 😉

Как составить уравнение плоскости по точке и двум неколлинеарным векторам?

Рассмотрим точку и два неколлинеарных вектора .Уравнение плоскости, которая проходит через точку параллельно векторам ,выражается формулой:

! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.

Принципиально ситуация выглядит так:

Обратите внимание, что точка и два коллинеарных вектора не определят плоскость (векторы будут свободно «вертеться» вокруг точки).

Составить уравнение плоскости по точке и векторам .

Решение: Составим уравнение плоскости по точке и двум неколлинеарным векторам:

Определитель удобнее всего раскрыть по первому столбцу:

Раскрываем определители второго порядка:

На первом месте у нас находится знак «минус». Хорошим тоном считается убрать наглеца, в этих целях меняем знак у каждого слагаемого. Проводим дальнейшие упрощения и получаем уравнение плоскости:

Сократить здесь ничего нельзя, поэтому:

Ответ:

…числа, конечно, страшноваты получились для первого примера =) …но переделывать, пожалуй, не буду, на практике большие числа – вещь распространённая.

Как проверить задание? Для проверки пока не хватает информации, но я обязательно выполню её чуть позже.

Составить уравнение плоскости по точке и двум неколлинеарным векторам .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Иногда может потребоваться решить обратную задачу – по известному уравнению плоскости найти параллельные ей векторы. Кстати, сколько параллельных векторов существует у плоскости? Бесконечно много. Однако нельзя объять необъятное, поэтому «вытащим» из уравнения плоскости три таких вектора:

Пусть плоскость задана общим уравнением . Тогда векторы будут параллельны данной плоскости (а, значит,компланарны), и какие-либо два из них – линейно независимы. Так, в Примере №1 мы составили уравнение плоскости . Построенной плоскости будут параллельны следующие векторы: . Если честно, не припомню, чтобы приходилось этим пользоваться, тем не менее, справка не лишняя.

Два неколлинеарных вектора и точка – это «жёсткая» конструкция, однозначно определяющая плоскость. Но существует более очевидный способ, о котором упоминалось выше, и он громким стуком в дверь уже давно просится на урок. Три точки. Дёшево и сердито.


источники:

http://mathter.pro/angem/5_2_1_kak_sostavit_uravnenie_ploskosti_po_tochke_i_dvum_vektoram.html

http://mydocx.ru/1-1837.html