Пункт 2. Вывод уравнения плоскости по точке и двум направляющим.
Пусть даны точка и 2 направляющих вектора
ими однозначно порождается некоторый параллелограмм, а следовательно и плоскость. Одного направляющего вектора недостаточно, ведь тогда плоскость может вращаться вокруг него, то есть плоскость не будет однозначно фиксирована.
Обозначим координаты направляющих, например, так: и
.
Первый способ. Можно найти нормаль к плоскости как векторное произведение 2 направляющих векторов и далее искать уравнение плоскости по точке и нормали, методом, рассмотренным в пункте 1. Но это будет решение в 2 шага.
Однако можно также получить уравнение плоскости сразу, без вычисления векторного произведения:
Второй способ.Возьмём произвольную точку . Если она принадлежит плоскости, то вектор
(показан красным цветом) будет лежать в плоскости, то есть тройка векторов
,
образует линейно-зависимую систему (ЛЗС), то есть эти векторы не образуют параллелепипед, а лежат в одной плоскости.
| Тогда смешанное произведение 0, то есть определитель, составленный из них, равен 0: |
Вычисляя этот определитель, мы получим в качестве результата некоторое уравнение, содержащее x,y,z. А если начальная точка (0,0,0), то уравнение будет вычисляться с помощью такого определителя: .
Пример.Построить уравнение плоскости, проходящей через начало координат, параллельно 2 направляющим (1,2,3) и (1,1,1).
Решение. . Можем разложить по первой строке:
=
.
Для удобства, чтобы 1-й коэффициент был положителен, можно домножить на . Ответ:
.
Замечание.Векторы можно поменять местами, и это не влияет на уравнение плоскости. Неважно, какой из них считается первым, а какой вторым. Если все миноры сменят знак, то из уравнения просто можно будет вынести коэффициент
.
Замечание. Построение уравнения плоскости по трём точкам. Если дано 3 точки, достаточно взять 2 направляющих и
(пусть это и будут те самые
) и затем действовать так, как сказано ранее.
Лекция № 7. 14. 10. 2016
Пункт 3. Расстояние от точки до плоскости.
Пусть дано уравнение плоскости и произвольная точка
.
| Возможно, она лежит в плоскости (тогда расстояние по формуле автоматически получится 0). Но в общем случае она не принадлежит плоскости. Мы не знаем, где основание перпендикуляра, более того, его и не потребуется искать. |
Возьмём произвольную точку в плоскости. Сделать это просто: присвоим какие-нибудь значения 2 переменным из трёх, и вычислим третью. Например, как правило, задать x,y и вычислить z.
Итак, выбрали какую-то точку в плоскости. Отрезок между и
не перпендикулярен плоскости, но его проекция на нормаль — это как раз и есть кратчайшее расстояние до плоскости (d).
=
=
.
Если подставить в уравнение плоскости (в числителе) точку, лежащую в плоскости, то получим 0. В общем же случае, результат подстановки некоторой точки, не лежащей в плоскости, в уравнение плоскости, характеризует удаление от плоскости.
Пункт 4. Взаимное расположение плоскостей
Пусть даны 2 плоскости.
Если рассматривать это как систему уравнений, то видим, что 2 уравнения и 3 переменных, то есть по меньшей мере одна свободная переменная. Это означает, что если решения есть, то их бесконечно много. Это и есть все точки, принадлежащие прямой, являющейся пересечением плоскостей.
Чтобы найти пересечение, достаточно решить систему уравнений, где 2 уравнения — это и есть уравнения этих плоскостей.
Если то плоскости совпадают, так как уравнения полностью пропорциональны.
Если то плоскости параллельны. Дело в том, что если из одного уравнения вычесть кратное второму, то получим все 0 коэффициенты при x, y, z, и останется противоречивое уравнение (некая ненулевая константа = 0).
Если пропорциональность нарушена среди каких-то из первых 3 дробей, то плоскости пересекаются по прямой.
Пункт 5. Угол между плоскостями и метод его нахождения.
| Можно искать как угол между нормалями |
Прямая в пространстве.
Для прямой на плоскости и для плоскости в пространстве есть однозначно определённое направление нормали (перпендикуляра) т.к. там размерности рассматриваемых многообразий 1 и 2 (2 и 3 соответственно), то есть «не хватает» одной размерности. А для прямой в пространстве не хватает 2 размерностей (1 и 3). Это совершенно новый случай, здесь нельзя однозначно задать перпендикуляр. Есть целая плоскость, перпендикулярная прямой, то есть бесконечное число нормалей. А вот направляющий вектор однозначно определён (с точность до его длины, конечно). Это проявится в том, что мы получим другой тип уравнений.
5.2.1. Как составить уравнение плоскости
по точке и двум неколлинеарным векторам?
Конструировать уравнение будем с помощью векторов и точек. Их должно быть как можно меньше, но достаточно, чтобы однозначно определить плоскость. Одним словом, красивая математическая лаконичность.
Казалось бы, плоскость можно однозначно определить с помощью двух неколлинеарных векторов. Но нет – векторы свободны и бродят по всему пространству, поэтому ещё нужна фиксированная точка:
Уравнение плоскости, которая проходит через точку параллельно неколлинеарным векторам
, выражается формулой:
! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.
Принципиально ситуация выглядит так: Обратите внимание, что точка и два коллинеарных вектора не определят плоскость однозначно (они будут «вертеться» вокруг точки и зададут целый «пучок» плоскостей).
Задача 130
Составить уравнение плоскости по точке и неколлинеарным векторам
.
Решение: искомое уравнение составим по формуле:
Определитель удобнее всего раскрыть по первому столбцу:
Раскрываем определители второго порядка:
На первом месте у нас нарисовался знак «минус», и хорошим тоном считается его убрать (точно так же, как и у общего уравнения «плоской» прямой).
Меняем у каждого слагаемого знак и проводим дальнейшие упрощения:
, сократить здесь ничего нельзя, поэтому:
Ответ:
Как проверить задание? Для проверки пока не хватает информации, но мы обязательно выполним её чуть позже. Решаем самостоятельно:
Задача 131
Составить уравнение плоскости по векторам и принадлежащей ей точке
.
Кстати, если векторы коллинеарны, то и на этот случай есть корректный ответ 😉
Как составить уравнение плоскости по точке и двум неколлинеарным векторам?
Рассмотрим точку и два неколлинеарных вектора
.Уравнение плоскости, которая проходит через точку
параллельно векторам
,выражается формулой:
! Примечание: под выражением «вектор параллелен плоскости» подразумевается, что вектор можно отложить и в самой плоскости. Для наглядности я буду откладывать векторы прямо в плоскости.
Принципиально ситуация выглядит так:
Обратите внимание, что точка и два коллинеарных вектора не определят плоскость (векторы будут свободно «вертеться» вокруг точки).
Составить уравнение плоскости по точке и векторам
.
Решение: Составим уравнение плоскости по точке и двум неколлинеарным векторам:
Определитель удобнее всего раскрыть по первому столбцу:
Раскрываем определители второго порядка:
На первом месте у нас находится знак «минус». Хорошим тоном считается убрать наглеца, в этих целях меняем знак у каждого слагаемого. Проводим дальнейшие упрощения и получаем уравнение плоскости:
Сократить здесь ничего нельзя, поэтому:
Ответ:
…числа, конечно, страшноваты получились для первого примера =) …но переделывать, пожалуй, не буду, на практике большие числа – вещь распространённая.
Как проверить задание? Для проверки пока не хватает информации, но я обязательно выполню её чуть позже.
Составить уравнение плоскости по точке и двум неколлинеарным векторам
.
Это пример для самостоятельного решения, полное решение и ответ в конце урока.
Иногда может потребоваться решить обратную задачу – по известному уравнению плоскости найти параллельные ей векторы. Кстати, сколько параллельных векторов существует у плоскости? Бесконечно много. Однако нельзя объять необъятное, поэтому «вытащим» из уравнения плоскости три таких вектора:
Пусть плоскость задана общим уравнением . Тогда векторы
будут параллельны данной плоскости (а, значит,компланарны), и какие-либо два из них – линейно независимы. Так, в Примере №1 мы составили уравнение плоскости
. Построенной плоскости будут параллельны следующие векторы:
. Если честно, не припомню, чтобы приходилось этим пользоваться, тем не менее, справка не лишняя.
Два неколлинеарных вектора и точка – это «жёсткая» конструкция, однозначно определяющая плоскость. Но существует более очевидный способ, о котором упоминалось выше, и он громким стуком в дверь уже давно просится на урок. Три точки. Дёшево и сердито.
http://mathter.pro/angem/5_2_1_kak_sostavit_uravnenie_ploskosti_po_tochke_i_dvum_vektoram.html
http://mydocx.ru/1-1837.html