Уравнение плоской волны длина волны волновое число

Уравнение плоской и сферической волн. Длина волны, волновое число, фазовая скорость

Уравнением волны называется выражение, которое определяет смещение колеблющейся точки как функцию координат x, y, z ее равновесного положения и времени t:

Найдем явный вид функции x для плоской волны, считая что колебания носят гармонический характер. Направим ось х вдоль направления распространения волны, тогда волновые поверхности будут перпендикулярны к оси х. Так как все точки, принадлежащие волновой поверхности, колеблются одинаково, то смещение x будет зависеть только от х и t:

Пусть колебания точек, лежащих в плоскости х = 0
(рис. 2.2.1), описываются гармонической функцией:

Частицы среды расположенные слева и справа от источника будут совершать гармонические колебания, смещения которых в некоторый момент времени t можно представить графиком (рис.2.2.2).

Кратчайшее расстояние между частицами, колеблющимися одинаковым образом (в одинаковой фазе), называется длиной волны l. Длина волны, очевидно, равна расстоянию, на которое распространяется волна за период колебаний частиц:

Учитывая связь периода колебаний T с частотой n, получим, что

Найдем уравнение колебаний частиц в плоскости, соответствующей произвольному значению x (это и будет уравнение плоской волны).

Для того чтобы пройти путь от плоскости x = 0 до плоскости, соответствующей значению x, волна затратит время

,

где V — скорость распространения волны.

Следовательно, колебания частиц в плоскости x будет отставать по времени на t от колебаний частиц в плоскости x=0, то есть уравнение колебаний будет иметь вид:

. (2.2.6)

Таким образом, уравнение плоской волны имеет вид:

(2.2.7)

При получении уравнения (2.2.7) изменение амплитуды колебаний не учитывалось, то есть это уравнение справедливо, если энергия волны не поглощается средой.

Найдем скорость распространения волны. Для этого зафиксируем значение фазы в уравнении (2.2.7), то есть положим:

(2.2.8)

Это выражение определяет координату x, для которой зафиксированное значение фазы достигается в данный момент времени t. Определив из (2.2.8) значение , найдем скорость, с которой перемещается данное значение фазы — фазовую скорость. Продифференцируем выражение (2.2.8), тогда получим:

dt- , откуда (2.2.9)

Из (2.2.9) следует, что фазовая скорость волны (2.2.7) положительна. Таким образом, уравнение (2.2.7) описывает волну, распространяющуюся в положительном направлении оси X.Очевидно, уравнение волны, распространяющейся в противоположном направлении, можно получить, заменив в уравнении (2.2.7) X на -X, то есть

x=A×cosw(t+ . (2.2.10)

Действительно, приравняв константе фазу волны (2.2.10) и продифференцировав, получим .

Уравнению плоской волны можно придать симметричный относительно t и x вид. Для этого введем волновое число k:

. (2.2.11)

С учетом формулы (2.2.4) из (2.2.11) получаем соотношение

, (2.2.12)

где — циклическая частота.

Заменив в уравнении (2.2.7) V согласно (2.2.12) и внеся в скобки w, получим уравнение плоской волны в виде

Очевидно, уравнение (2.2.10) также может быть записано в симметричном относительно t и x виде и будет отличаться от (2.2.13) знаком в аргументе у косинуса.

Получим теперь уравнение сферической волны. Если рассматривать волну на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. Такой источник в случае, когда скорость распространения волны во всех направлениях одна и та же, создает сферические волны. Пусть фаза колебаний источника равна wt , тогда фаза колебаний частиц среды лежащих на волновой поверхности радиуса r будет равна . В этом выражении учтено, что расстояние r волна проходит за время .

Как будет показано в §2.4,амплитуда колебаний в сферической волне убывает по закону , даже если среда не поглощает энергию волны. Следовательно, уравнение сферической волны имеет вид:

x= , (2.2.14)

где константа A0 — численно равна амплитуде колебаний на расстоянии, равном единице длины. Размерность ее равна размерности амплитуды (зависит от физической природы волнового процесса), умноженной на размерность длины.

Получим уравнение плоской волны, распространяющейся в произвольном направлении, образующем с осями координат x, y, z углы a, b и g.

Пусть источником колебаний будет плоская пластина, проходящая через начало координат (рис.2.2.3), колебания которой описываются уравнением

x(0,t) = Acoswt. (2.2.15)

В плоскости, отстоящей от начала координат на расстоянии l, колебания частиц будут отставать от колебаний источника на время t и, следовательно, их смещение будет описываться уравнением

= . (2.2.16)

Выразим l через радиус-вектор точек рассматриваемой плоскости (это плоскость является волновой поверхностью).

Для этого введем единичный вектор нормали к волновой поверхности. Из рис.2.2.3 следует, что

. (2.2.17)

Подставим выражение (2.2.17) в уравнение (2.2.16), тогда получим

(2.2.18)

Учтем, что и введем вектор

, (2.2.19)

БИЛЕТ 18.Волновое движение. Плоская гармоническая волна. Длина волны, волновое число. Фазовая скорость. Уравнение волны. Одномерное волновое уравнение.

Волновое движение – процесс распространения колебаний в сплошной среде. При распространении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояние колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества Среди разнообразных волн, встречающихся в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Если рассмотреть волновой процесс подробнее, то становится ясным, что колеблются не только частицы, расположенные вдоль оси х, но и совокупность частиц, расположенных в некотором объеме, т. е. волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Бегущая волна – волна, которая переносит в пространстве энергию. Перенос энергии волнами количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова. Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны. — уравнение бегущей волны. — если плоская волна распространяется в противоположном направлении. В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид: , где А — const — амплитуда волны; ɷ —циклическая частота; φ0начальная фаза волны; определяемая в общем случае выбором начал отсчета х и t; скорость v распространения волны в уравнении есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью. Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением —дифференциальным уравнением в частных производных — или

Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний.

Волново́е число́ (также называемое пространственной частотой) — это отношение 2π радиан к длине волны:

Одномерное волновое уравнение – уравнение, описывающее продольные колебания стержня, сечения которого совершают плоскопараллельные колебательные движения, а также поперечные колебания тонкого стержня (струны) и другие задачи.

БИЛЕТ 20 Интерференционное поле от двух точечных источников. Опыт Юнга. Интер­ферометр Майкельсона. Интерференция в тонких пленках. Стоячие волны.

Для получения когерентных источников света французский физик Огюстен Френель (1788—1827) нашел в 1815 г. простой и остроумный способ. Надо свет от одного источника разделить на два пучка и, заставив их пройти различные пути, свести вместе. Тогда цуг волн, испущенных отдельным атомом, разделится на двакогерентных цуга. Так будет для цугов волн, испускаемых каждым атомом источника. Свет, испускаемый одним атомом, дает определенную интерференционную картину. При наложении этих картин друг на друга получается достаточно интенсивное распределение освещенностина экране: интерференционную картину можно наблюдать. Имеется много способов получения когерентных источников света, но суть их одинакова. С помощью разделения пучка на две части получают два мнимых источника света, дающих когерентные волны. Для этого используют два зеркала (бизеркала Френеля), бипризму (две призмы, сложенные основаниями), билинзу (разрезанную пополам линзу с раздвинутыми половинами) и др. Условие максимума: Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max): Условие минимума: Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум:

В этом опыте Юнг поток света направил на непрозрачную пластинку с двумя очень маленькими отверстиями, за которой находился экран. Если придерживаться господствовавшей в то время корпускулярной теории света, то на экране он должен был увидеть две светящиеся точки. Вместо этого на экране он увидел чередующиеся светлые и тёмные полосы. Причём самая яркая из них находилась на экране посередине между отверстиями на перегородке, чего быть вообще-то не должно. Юнг объяснил возникновение полос явлением интерференции света. На экране светлые полосы соответствуют точкам, в которых фазы волн одинаковы, а тёмные — точкам, в которых фазы волн противоположны.

Интерферометр Майкельсона — двухлучевой интерферометр, изобретённый Альбертом Майкельсоном. Данный прибор позволил впервые [1] измеритьдлину волны света. В опыте Майкельсона интерферометр был использован Майкельсоном для проверки гипотезы о светоносном эфире. [1]

Конструктивно состоит из светоделительного зеркала, разделяющего входящий луч на два, которые в свою очередь, отражаются зеркалом обратно. На полупрозрачном зеркале разделённые лучи вновь направляются в одну сторону, чтобы, смешавшись на экране, образовать интерференционную картину. Анализируя её и изменяя длину одного плеча на известную величину, можно по изменению вида интерференционных полос измерить длину волны, либо, наоборот, если длина волны известна, можно определить неизвестное изменение длин плеч. Радиус когерентности изучаемого источника света или другого излучения определяет максимальную разность между плечами интерферометра.

Интерференционные полосы равного наклона. При освещении тонкой пленки происходит наложение волн от одного и того же источника, отразившихся от передней и задней поверхностей пленки. При этом может возникнуть интерференция света. Если свет белый, то интерференционные полосы окрашены. Интерференцию в пленках можно наблюдать на стенках мыльных пузырей, на тонких пленках масла или нефти, плавающих на поверхности воды, на пленках, возникающих на поверхности металлов или зеркала

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называетсястоячей волной. Практически стоячие волны возникают при отражении от преград.

Уравнение плоской волны длина волны волновое число

отстоящие друг от друга на расстоянии λ, колеблются одинаковым образом.

Уравнение плоской волны

Найдем вид функции . в случае плоской волны, предполагая, что колебания носят гармонический характер.

Пусть колебание точек, лежащих в плоскости x = 0, имеет вид (при начальной фазе ф = 0)

Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время τ = х/v. Следовательно, колебания частиц в плоскости x будут отставать по времени на τ от колебаний частиц в плоскости x = 0, т. е.

— это уравнение плоской волны (рис. 2.4.3). Таким образом, . есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания A = const. Это будет, если энергия волны не поглощается средой.

Такой же вид уравнение (2.4.5) будет иметь, если колебания распространяются вдоль оси y или z.

В общем виде уравнение плоской волны записывается так:

Выражения (2.4.5) и (2.4.6) есть уравнения бегущей волны. Уравнение волны можно записать и в другом виде.

Введем волновое число k = 2π/λ, или в векторной форме

где k — волновой вектор; n — нормаль к волновой поверхности.

Так как λ = vT , то k = 2π/vT = 2πν/v = ω/v. Отсюда v = ω/k.

Тогда уравнение плоской волны запишется так:


источники:

http://poisk-ru.ru/s73954t1.html

http://www.chem-astu.ru/chair/study/physics-part1/?p=136