Уравнение прямой в отрезках имеет вид тест

Уравнение прямой в отрезках имеет вид тест

Даны прямые:
$$y=3x+4$$ ( $$1$$ );
$$y=5x+4$$ ( $$2$$ );
$$y=3x-8$$ ( $$3$$ );
$$y=8-3x$$ ( $$4$$ );
$$2y=6x+10$$ ( $$5$$ ).
Параллельными являются прямые:

Прямые $$y=k_1x+b_1$$ и $$y=k_2x+b_2$$ параллельны, если $$k_<1>=k_<2>$$ и $$b_<1>\neq b_<2>$$.

  1. Уравнение прямой $$2y=6x+10$$ мы записали в виде $$y=3x+5$$ .
  2. Прямые $$A_1x+B_1y+C_1=0$$ и $$A_2x+B_2y+C_2=0$$ параллельны, если коллинеарны их нормальные векторы $$\bar(A_1;B_1)$$ и $$\bar(A_2;B_2)$$ :
    $$\frac=\frac$$ .

Если прямая проходит через точки $$A(1;-2)$$ и $$B(2;4)$$ , то уравнение этой прямой в общем виде записывают:

Если известны координаты точек $$A(x_<1>;y_<1>)$$ и $$B(x_<2>;y_<2>)$$ , принадлежащих прямой, то уравнение этой прямой можно найти по формуле:
$$\frac>-x_<1>>=\frac>-y_<1>>$$ .

Общее уравнение прямой на плоскости имеет вид:

Даны прямые:
$$3x+5y+7=0$$ ( $$1$$ );
$$3x-5y-7=0$$ ( $$2$$ );
$$10x+6y-5=0$$ ( $$3$$ );
$$x+y=5$$ ( $$4$$ ).
Перпендикулярными являются прямые:

Прямые $$y=k_<1>x+b_<1>$$ и $$y=k_<2>x+b_<2>$$ перпендикулярны, если выполняется условие:

Запишем уравнения прямых в виде $$y=kx+b$$ :

Прямые $$A_1x+B_1y+C_1=0$$ и $$A_2x+B_2y+C_2=0$$ перпендикулярны, если перпендикулярны их нормальные векторы (скалярное произведение нормальных векторов равно нулю):
$$A_1A_2+B_1B_2=0$$ .

Если прямая пересекает оси координат в точках $$A(3;0)$$ и $$B(0;8)$$, то ее уравнение с угловым коэффициентом имеет вид:

Так как $$a=3$$ , а $$b=8$$ , то запишем:

Уравнение прямой с угловым коэффициентом $$k$$ имеет вид:

Расстояние от точки $$A(1;2)$$ до прямой $$8y=6x-5$$ равно:

Расстояние от точки $$M \left (x_<0>;y_ <0>\right )$$ до прямой $$Ax+By+C=0$$ находят по формуле:
$$d=\frac<\left |Ax_<0>+By_<0>+C \right |><\sqrt+B^<2>>>$$ .

Расстояние от точки до прямой – величина неотрицательная.

Если угловой коэффициент прямой, проходящей через точку $$M(1;-5)$$ , равен $$5$$ , то уравнение этой прямой в отрезках имеет вид:

Если известна точка $$M \left (x_<0>;y_ <0>\right )$$ , принадлежащая прямой, и угловой коэффициент $$k$$ прямой, то уравнение этой прямой можно найти по формуле:
$$y=y_<0>+k(x-x_<0>)$$ .

Найдем уравнение прямой:
$$y=-5+5(x-1)$$ , $$y=5x-10$$ , $$5x-y=10$$ .
Запишем уравнение этой прямой в отрезках:
$$\frac<5x><10>-\frac<10>=\frac<10><10>$$ , $$\frac<2>+\frac<-10>=1$$ .

Уравнение прямой в отрезках имеет вид:

Уравнение прямой в отрезках: описание, примеры, решение задач

Продолжаем изучение раздела «Уравнение прямой на плоскости» и в этой статье разберем тему «Уравнение прямой в отрезках». Последовательно рассмотрим вид уравнения прямой в отрезках, построение прямой линии, которая задается этим уравнением, переход от общего уравнения прямой к уравнению прямой в отрезках. Все это будет сопровождаться примерами и разбором решения задач.

Уравнение прямой в отрезках – описание и примеры

Пусть на плоскости расположена прямоугольная система координат O x y .

Прямая линия на плоскости в декартовой системе координат O x y задается уравнением вида x a + y b = 1 , где a и b – это некоторые действительные числа, отличные от нуля, величины которых равны длинам отрезков, отсекаемых прямой линией на осях O x и O y . Длины отрезков считаются от начала координат.

Как мы знаем, координаты любой из точек, принадлежащих прямой линии, заданной уравнением прямой, удовлетворяют уравнению этой прямой. Точки a , 0 и 0 , b принадлежат данной прямой линии, так как a a + 0 b = 1 ⇔ 1 ≡ 1 и 0 a + b b = 1 ⇔ 1 ≡ 1 . Точки a , 0 и b , 0 расположены на осях координат O x и O y и удалены от начала координат на a и b единиц. Направление, в котором нужно откладывать длину отрезка, определяется знаком, который стоит перед числами a и b . Знак « — » обозначает, что длину отрезка необходимо откладывать в отрицательном направлении координатной оси.

Поясним все вышесказанное, расположив прямые относительно фиксированной декартовой системы координат O x y на схематическом чертеже. Уравнение прямой в отрезках x a + y b = 1 применяется для построения прямой линии в декартовой системе координат O x y . Для этого нам необходимо отметить на осях точки a , 0 и b , 0 , а затем соединить эти точки линией при помощи линейки.

На чертеже показаны случаи, когда числа a и b имеют различные знаки, и, следовательно, длины отрезков откладываются в разных направлениях координатных осей.

Прямая линия задана уравнением прямой в отрезках вида x 3 + y — 5 2 = 1 . Необходимо построить эту прямую на плоскости в декартовой системе координат O x y .

Решение

Используя уравнение прямой в отрезках, определим точки, через которые проходит прямая линия. Это 3 , 0 , 0 , — 5 2 . Отметим их и проведем линию.

Приведение общего уравнения прямой к уравнению прямой в отрезках

Переход от заданного уравнения прямой к уравнению прямой в отрезках облегчает нам решение различных задач. Имея полное общее уравнение прямой, мы можем получить уравнение прямой в отрезках.

Полное общее уравнение прямой линии на плоскости имеет вид A x + B y + C = 0 , где А , В и C не равны нулю. Мы переносим число C в правую часть равенства, делим обе части полученного равенства на – С . При этом, коэффициенты при x и y мы отправляем в знаменатели:

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Для осуществления последнего перехода мы воспользовались равенством p q = 1 q p , p ≠ 0 , q ≠ 0 .

В результате, мы осуществили переход от общего уравнения прямой A x + B y + C = 0 к уравнению прямой в отрезках x a + y b = 1 , где a = — C A , b = — C B .

Разберем следующий пример.

Осуществим переход к уравнению прямой в отрезках, имея общее уравнение прямой x — 7 y + 1 2 = 0 .

Решение

Переносим одну вторую в правую часть равенства x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Делим обе части равенства на — 1 2 : x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем полученное равенство к нужному виду: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Мы получили уравнение прямой в отрезках.

Ответ: x — 1 2 + y 1 14 = 1

В тех случаях, когда прямая линия задана каноническим или параметрическим уравнением прямой на плоскости, то сначала мы переходим к общему уравнению прямой, а затем уже к уравнению прямой в отрезках.

Перейти от уравнения прямой в отрезках и общему уравнению прямой осуществляется просто: мы переносим единицу из правой части уравнения прямой в отрезках вида x a + y b = 1 в левую часть с противоположным знаком, выделяем коэффициенты перед неизвестными x и y .

x a + y b = 1 ⇔ x a + y b — 1 = 0 ⇔ 1 a · x + 1 b · y — 1 = 0

Получаем общее уравнение прямой, от которого можно перейти к любому другому виду уравнения прямой на плоскости. Процесс перехода мы подробно разобрали в теме «Приведение общего уравнения прямой к другим видам уравнения прямой».

Уравнение прямой в отрезках имеет вид x 2 3 + y — 12 = 1 . Необходимо написать общее уравнение прямой на плоскости.

Решение

Действует по заранее описанному алгоритму:

x 2 3 + y — 12 = 1 ⇔ 1 2 3 · x + 1 — 12 · y — 1 = 0 ⇔ ⇔ 3 2 · x — 1 12 · y — 1 = 0

Ответ: 3 2 · x — 1 12 · y — 1 = 0

Тесты на тему прямая

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Проверочный тест по теме: Прямая на плоскости

1. Прямая 2 x +3 y =0

A )Параллельна оси ОУ

B )Параллельна оси ОХ

C )Параллельна оси О Z

D )Проходит через начало координат

E )Параллельна плоскости ХОУ

A ) Параллельна оси ОУ

B ) Параллельна оси О Z

C ) Параллельна оси ОХ

D ) Параллельна плоскости ХОУ

E ) Параллельна плоскости УО Z

3. Уравнение Ах+Ву+С=0 определяет

4. Как называется данный вид уравнения ?

A ) общее уравнение

B ) уравнение прямой в отрезках

C ) уравнение проходящее через три точки

D ) уравнение плоскости

E ) уравнение с угловым коэффициентом

5. Что определяет данная формула ?

A ) угол между прямыми

B ) расстояние от точки до плоскости

C ) угловой коэффициент

D ) уравнение прямой на плоскости

E ) расстояние от точки до прямой

6. Сколько свойств прямой знаете?

7. Укажите один из видов уравнения прямой

A ) уравнение плоскости с угловым коэффициентом

B ) уравнение плоскости квадратичное

C ) уравнение прямой проходящий через одну точку

D ) уравнение плоскости проходящий через три точки

E ) уравнение прямой проходящий через две точки

8. Если A и С=0, В≠0 то …

A ) то прямая перпендикулярна оси O х

B ) то прямая совпадает с осью O х

C ) то плоскость перпендикулярна оси O у

D ) то прямая проходит через начало координат

E ) то прямая совпадает с осью O у

9. Если A =0, В и С≠0, то …

A ) то прямая параллельна оси Ox

B ) то плоскость совпадает с плоскостью у Oz

C ) то плоскость перпендикулярна оси Ox

D ) то прямая совпадает с плоскостью х O у

E ) то прямая параллельна оси O у

10. Если В и С=0, А≠0 то …

A ) то прямая перпендикулярна оси O х

B ) то прямая совпадает с осью O х

C ) то плоскость перпендикулярна оси O у

D ) то прямая проходит через начало координат

E ) то прямая совпадает с осью O у

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 939 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 686 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 313 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 587 539 материалов в базе

Материал подходит для УМК

«Математика (базовый уровень) », Мордкович А.Г., Смирнова И.М.

§ 49. Уравнение прямой в пространстве

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 17.02.2020
  • 127
  • 0

  • 17.02.2020
  • 155
  • 2

  • 17.02.2020
  • 733
  • 12

  • 17.02.2020
  • 220
  • 4

  • 15.02.2020
  • 1114
  • 4

  • 15.02.2020
  • 356
  • 16

  • 14.02.2020
  • 804
  • 21

  • 13.02.2020
  • 283
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 17.02.2020 835
  • DOCX 16.6 кбайт
  • 24 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Орынбаев Бахтияр Комекович. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 2 месяца
  • Подписчики: 0
  • Всего просмотров: 18014
  • Всего материалов: 14

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

Время чтения: 1 минута

Ленобласть распределит в школы прибывающих из Донбасса детей

Время чтения: 1 минута

Минобрнауки создаст для вузов рекомендации по поддержке молодых семей

Время чтения: 1 минута

В России действуют более 3,5 тысячи студенческих отрядов

Время чтения: 2 минуты

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

В ростовских школах рассматривают гибридный формат обучения с учетом эвакуированных

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Только 23 февраля!
Получите новую
специальность
по низкой цене

Цена от 1220 740 руб. Промокод на скидку Промокод скопирован в буфер обмена ПП2302 Выбрать курс Все курсы профессиональной переподготовки


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-prjamoj-v-otrezkah/

http://infourok.ru/testy-na-temu-pryamaya-4149607.html