В уравнение гармонического колебания x acos wt величина называется

В уравнении гармонических колебаний х = A cos(wt + ф0) величина w называется 1) фазой 2) частотой

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,399
  • гуманитарные 33,632
  • юридические 17,905
  • школьный раздел 607,960
  • разное 16,854

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Контрольная работа по физике Электромагнитные колебания и волны 11 класс

Контрольная работа по физике Электромагнитные колебания и волны для учащихся 11 класса с ответами. Контрольная работа включает 5 вариантов, в каждом варианте по 8 заданий.

1 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ0) величина, стоящая под знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите частоту колебаний тока.

1) 8 Гц
2) 0,125 Гц
3) 6 Гц
4) 4 Гц

А3. Как изменится период собственных электромагнитных колебаний в контуре, если ключ К перевести из положения 1 в положение 2?

1) Уменьшится в 2 раза
2) Увеличится в 2 раза
3) Уменьшится в 4 раза
4) Увеличится в 4 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке уменьшили в 2 раза, а его сопротивление уменьшили в 4 раза. При этом мощность тока

1) уменьшится в 4 раза
2) уменьшится в 8 раз
3) не изменится
4) увеличится в 2 раза

А5. Сила тока в первичной обмотке трансформатора 0,5 А, напряжение на её концах 220 В. Сила тока во вторичной обмотке 11 А, напряжение на её концах 9,5 В. Опреде­лите КПД трансформатора.

1) 105 %
2) 95 %
3) 85 %
4) 80 %

В1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с0123456789
q, 10 -6 Кл21,420-1,42-2-1,4201,4221,42

Вычислите ёмкость конденсатора в контуре, если индук­тивность катушки равна 32 мГн. Ответ выразите в пико­фарадах и округлите до десятых.

В2. Колебательный контур радиопередатчика содержит кон­денсатор ёмкостью 0,1 нФ и катушку индуктивностью 1 мкГн. На какой длине волны работает радиопередат­чик? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с. Ответ округлите до целых.

C1. Определите период электромагнитных колебаний в коле­бательном контуре, если амплитуда силы тока равна Im, а амплитуда электрического заряда на пластинах кон­денсатора qm.

2 вариант

A1. В уравнении гармонического колебания i = Imcos(ωt + φ0) величина ω называется

1) фазой
2) начальной фазой
3) амплитудой силы тока
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите ампли­туду колебаний тока.

1) 0,4 А
2) 0,2 А
3) 0,25 А
4) 4 А

А3. Как изменится частота собственных электромагнитных колебаний в кон­туре, если ключ К перевести из положения 1 в положение 2?

1) Уменьшится в 4 раза
2) Увеличится в 4 раза
3) Уменьшится в 2 раза
4) Увеличится в 2 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке увеличили в 2 раза, а сопротивление участка уменьшили в 4 раза. При этом мощность тока

1) не изменилась
2) возросла в 16 раз
3) возросла в 4 раза
4) уменьшилась в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 110 В, сила тока в ней 0,1 А. Напряжение на кон­цах вторичной обмотки 220 В, сила тока в ней 0,04 А. Чему равен КПД трансформатора?

1) 120 %
2) 93 %
3) 80 %
4) 67 %

B1. Напряжение на конденсаторе в цепи переменного тока меняется с циклической частотой ω = 4000 с -1 . Амплиту­да колебаний напряжения и силы тока равны соответст­венно Um = 200 В и Im = 4 А. Найдите ёмкость конденса­тора.

В2. Найдите минимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В процессе колебаний в идеальном колебательном конту­ре в момент времени t заряд конденсатора q = 4 · 10 -9 Кл, а сила электрического тока в катушке равна I = 3 мА. Период колебаний Т = 6,28 · 10 -6 с. Найдите амплитуду колебаний заряда.

3 вариант

А1. В уравнении гармонического колебания u = Umsin(ωt + φ0) величина φ0 называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Амплитуда колебаний тока равна

1) 20 А
2) 10 А
3) 0,25 А
4) 4 А

А3. В наборе радиодеталей для изготовления простого коле­бательного контура имеются две катушки с индуктивно­стями L1 = 1 мкГн и L2 = 2 мкГн, а также два конденса­тора, ёмкости которых С1 = 3 пФ и С2 = 4 пФ. При каком выборе двух элементов из этого набора частота собственных колебаний контура будет наибольшей?

А4. По участку цепи сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. Как изме­нится мощность переменного тока на этом участке цепи, если действующее значение напряжения на нём умень­шить в 2 раза, а его сопротивление в 4 раза увеличить?

1) Уменьшится в 16 раз
2) Уменьшится в 4 раза
3) Увеличится в 4 раза
4) Увеличится в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 127 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 12,7 В, сила тока в ней 8 А. Чему равен КПД трансформатора?

1) 100 %
2) 90 %
3) 80 %
4) 70 %

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с024681012141618
q, 10 -6 Кл02,1332,130-2,13-3-2,1302,13

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 100 пФ. Ответ выразите в миллигенри и округлите до целых.

В2. Найдите максимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы тока в катушке индуктивности равна 10 мА, а амплитуда колебаний заряда конденсатора равна 5 нКл. В момент времени t заряд конденсатора равен 3 нКл. Найдите силу тока в катушке в этот момент.

4 вариант

A1. В уравнении гармонического колебания u = Umsin(ωt + φ0) величина Um называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Частота колебаний тока равна

1) 0,12 Гц
2) 0,25 Гц
3) 0,5 Гц
4) 4 Гц

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колеба­ниях. Катушку в этом контуре заменили на другую ка­тушку, индуктивность которой в 4 раза меньше. Каким будет период колебаний контура?

1) 1 мкс
2) 2 мкс
3) 4 мкс
4) 8 мкс

А4. По участку цепи с некоторым сопротивлением R течёт переменный ток, меняющийся по гармоническому зако­ну. Как изменится мощность переменного тока на этом участке цепи, если действующее значение силы тока на нём увеличить в 2 раза, а его сопротивление в 2 раза уменьшить?

1) Не изменится
2) Увеличится в 2 раза
3) Уменьшится в 2 раза
4) Увеличится в 4 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 220 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 22 В. Какой была бы сила тока во вторичной обмотке при коэффициенте полезного дейст­вия трансформатора 100 %?

1) 0,1 А
2) 1 А
3) 10 А
4) 100 А

B1. Индуктивность катушки равна 0,125 Гн. Уравнение ко­лебаний силы тока в ней имеет вид: i = 0,4cos(2 · 10 3 t), где все величины выражены в СИ. Определите амплиту­ду напряжения на катушке.

В2. Колебательный контур радиоприёмника содержит кон­денсатор, ёмкость которого 10 нФ. Какой должна быть индуктивность контура, чтобы обеспечить приём волны длиной 300 м? Скорость распространения электромаг­нитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре в катушке индук­тивности амплитуда колебаний силы тока Im = 5 мА, а амплитуда колебаний заряда конденсатора qm = 2,5 нКл. В момент времени t сила тока в катушке i = 3 мА. Най­дите заряд конденсатора в этот момент.

5 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ0) величина, стоящая перед знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Период колебаний тока равен

1) 2 мс
2) 4 мс
3) 6 мс
4) 10 мс

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колебаниях.

Если ёмкость конденсатора увеличить в 4 раза, то период собственных колебаний контура станет равным

1) 2 мкс
2) 4 мкс
3) 8 мкс
4) 16 мкс

А4. По участку цепи с некоторым сопротивлением R течёт пе­ременный ток, меняющийся по гармоническому закону. В некоторый момент времени действующее значение силы тока на участке цепи увеличивается в 2 раза, а сопротив­ление уменьшается в 4 раза. При этом мощность тока

1) увеличится в 4 раза
2) увеличится в 2 раза
3) уменьшится в 2 раза
4) не изменится

А5. КПД трансформатора 90 %. Напряжение на концах пер­вичной обмотки 220 В, на концах вторичной 22 В. Сила тока во вторичной обмотке 9 А. Какова сила тока в пер­вичной обмотке трансформатора?

1) 0,1 А
2) 0,45 А
3) 0,9 А
4) 1 А

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с0123456789
q, 10 -6 Кл21,420-1,42-2-1,4201,4221,42

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 50 пФ. Ответ выразите в мил­лигенри и округлите до целых.

В2. Электрический колебательный контур радиоприёмника содержит катушку индуктивности 10 мГн и два парал­лельно соединенных конденсатора, ёмкости которых равны 360 пФ и 40 пФ. На какую длину волны настроен контур? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы электрического тока в катушке индуктивности Im = 5 мА, а амплитуда напряжения на конденсаторе Um = 2 В. В момент времени t сила тока в катушке i = 3 мА. Найдите напряжение на конденсаторе в этот момент.

Ответы на контрольную работу по физике Электромагнитные колебания и волны 11 класс
1 вариант
1-1
2-2
3-1
4-3
5-2
6. 50,7 пФ
7. 18,84 м
8. T = 2πqm/Im
2 вариант
1-4
2-2
3-3
4-2
5-3
6. 5 мкФ
7. 206,4 м
8. 5 нКл
3 вариант
1-2
2-2
3-3
4-1
5-3
6. 65 мГн
7. 619,1 м
8. 8 мА
4 вариант
1-3
2-2
3-2
4-2
5-3
6. 100 В
7. 2,54 мкГн
8. 2 нКл
5 вариант
1-3
2-2
3-3
4-4
5-4
6. 32 мГн
7. 3768 м
8. 1,6 В

X xmax cos wt формула

Механические волны

Е) Вынужденные колебания. Резонанс.

Гармонические колебания

План лекции

Механические колебания и волны.

ЛЕКЦИЯ 1

а) Общая характеристика и уравнение колебательного движения

б) Баланс энергии при колебательном движении

в) Сложение гармонических колебаний

г) Гармонический спектр простого и сложного колебания

д) Затухающие колебания

а) Общая характеристика волны. Волны продольные и поперечные.

б) Уравнение плоской волны

в) Поток энергии волны. Уравнение Умова.

а) Общая характеристика и уравнение колебательного движения.

Колебательное движение – один из видов механического движения. В жизни оно встречается повсюду: маятник в настенных часах, груз, подвешенный на пружине, вода в открытом сосуде, вагон на рессорах, корабль на волнах и др. Главной характерной чертой колебательного движения является егоповторяемость,т.е. каждое последующее движение повторяет предыдущее.

Для осуществления колебательного движения необходимы следующие условия: во-первых, должно быть наличие инертной массы, во-вторых, при выведении тела из положения равновесия должна возникать возвращающая сила.Данная сила должна быть пропорциональна величине отклонения тела от положения равновесия. Данная сила сообщает телу ускорение.

F = -kX– сила упругости; F = ma– сила инерции.

В данном случае, сила упругости является силой инерции: ma = -kX

Отсюда: a = -(k/m)XВведём обозначение: k/m = w 2 Здесь w– циклическая частота колебаний. Перепишем это уравнение в виде:

d 2 X/dt 2 = -w 2 X

Это – дифференциальное уравнение 2-го порядка. Представим его в виде:

d 2 X/dt 2 + w 2 X = 0

где d 2 X/dt 2 = kX/m w = k/m

Частное решение этого уравнения будет выглядеть так:

X = A sin ( wt + fо)

X – текущая координата

A – амплитуда

w – циклическая частота

t – время

f – фаза

– начальная фаза.

Следует напомнить, что здесь, как и во всей физике принято координату и амплитуду измерять в метрах, время – в секундах, фазу – в радианах, циклическую частоту – в с -1 .

Кроме того, в физике колебательного движения приняты следующие единицы:

n– частота (Гц)

Т – период (с)

Частота (в герцах) показывает, сколько колебаний совершит тело за 1 секунду.

Частота w ( в с -1 ) показывает, сколько колебаний тело совершит за 2pсекунд.

Период Т показывает продолжительность одного полного колебания (в секундах)

Особенность колебательного движения в том, что его легко можно связать с вращательным. Если представить себе какое-либо тело, движущееся по окружности в плоскости чертежа, то тень от него, падающая на вертикальную ось координат Х, будет совершать колебания вверх-вниз и если развернуть это движение на горизонтальную ось t, то получится кривая, являющаяся синусоидой.

Следует заметить, что графиком частного решения вышеуказанного дифференциального уравнения является кривая той же формы:

Наибольшее затруднение у студентов вызывает понятие фазы. В колебательном движении фаза играет туже роль, что координата в поступательном движении.

X = (ut + X ) для поступательного движения

f = ( wt + f ) для колебательного движения

В колебательном движении фаза показывает, какая часть периода прошла от начала колебания.

Зная, что координата колеблющегося тела изменяется по закону:

Х = А sin (wt + f )

найдём закон, по которому изменяется скорость и ускорение:

u = X = A w cos(wt + f )

a = u = X \ = -Aw 2 sin (wt + f )

Отсюда видно, что координата, скорость и ускорение изменяются либо по закону синуса, либо по закону косинуса. Причём, производная любого порядка даст либо синус, либо косинус. Из этого следует, что синус и косинус являются гармоническими функциями. Значит движение, осуществляющееся по законам синуса или косинуса является гармоническим колебанием, или колебанием, типа «проще некуда».

Все эти три графика представляют собой кривую одинаковой формы, только эти кривые сдвинуты относительно друг друга на 90 о

б) Баланс энергии при колебательном движении

Следует напомнить формулы кинетической и потенциальной энергии, используемые в механике.

Ек = mu 2 /2 – кинетическая энергия

Еп = kX 2/ /2 – потенциальная энергия

Из закона сохранения энергии следует, что полная механическая энергия замкнутой системы – есть величина постоянная:

Ек + Еп = Е

u = dX/dt = ( A sin wt) = A cos wt u = Aw

a = d 2 X/dt 2 = du/dt (Acos wt) = -Aw 2 sin wt a = Aw 2

Кинетическая энергия точки:

Ek = mA 2 cos 2 w t

Потенциальная энергия точки:

Еп = kA 2 /2 здесь: k = m w 2 так как k = ma /X = mA 2 w 2 /X

Еп =mA 2 w 2 sin 2 w t

Ек = mA 2 w 2 sin 2 w t

2

Ек + Еп = mA 2 w 2 (sin 2 wt + cos 2 wt)

Учитывая, что выражение в скобках равно единице, окончательно получим значение полной механической энергии колеблющейся точки

Е = mA 2 w 2

в) Сложение гармонических колебаний

Гармонические колебания можно сложить как в одном направлении, так и во взаимно перпендикулярных направлениях. Рассмотрим сложение колебаний в одном направлении. Возьмём простейший случай, когда складываются колебания одинаковой частоты, совпадающих по фазе. В этом случае будут складываться их амплитуды:

Если складываются колебания, находящиеся в противофазе, то их амплитуды будут вычитаться. При одинаковых амплитудах, колебания вообще погасят друг друга:

Если колебания складываются во взаимно перпендикулярном направлении, то колеблющаяся точка будет на плоскости выписывать сложную траекторию. Если частоты этих колебаний будут относиться как целые числа, то траектория будет иметь вид устойчивой кривой, которая называется фигурой Лиссажу:

г) Гармонический спектр

Если в одном направлении складываются колебания разных частот, то точка будет совершать сложные колебания, график которых будет представлять очень замысловатый вид, изобразить который графически бывает очень трудно. Существует ещё один способ графического изображения колебательного движения.

Французский математик Фурье доказал, что периодический процесс любой формы можно разложить на простые гармонические колебания. В связи с этим, графически колебания можно изобразить гармоническим спектром. По горизонтальной оси откладывается частота, а по вертикальной – амплитуда. Таким образом, гармонический спектр простого синусоидального колебания представляет собой отрезок прямой, перпендикулярный оси частот. Положение отрезка по горизонтали определяется частотой, а длина отрезка – амплитудой колебания.

Спектр сложного колебания представляет собой несколько линий.

Во многих случаях колебания изображать гармоническим спектром удобнее и проще, чем их графиком.

д) Затухающие колебания

В идеальном случае в колебательной системе происходит обмен кинетической и потенциальной энергии, причём, потерь энергии на трение нет. Поэтому, амплитуда колебания остаётся постоянной. В реальных же условиях при каждом цикле часть энергии переходит во внутреннюю, поэтому амплитуда колебания постепенно уменьшается по экспоненциальному закону:

Х = Aoe – bt sinwt гдe b– коэффициент затухания

График затухающего колебания имеет вид:

Дата добавления: 2014-01-05 ; Просмотров: 3739 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ответ оставил Гость

Решение: 1. запишем уровнение гк – X = Xmax * cos (wt + Фи(0)

2. выразим Омегу (w) через период (Т) : w = 2Пи/ T => w = 4*2Пи/10 = 4Пи/5 или

6.28 / 2.4 = 2,616. 7

3. подставляем в уравнение Х = 0.05*cos(4Пи/5 * 0.6)

Гармонические Колебания

Механическое гармоническое колебание – это прямолинейное неравномерное движение, при котором координаты колеблющегося тела (материальной точки) изменяются по закону косинуса или синуса в зависимости от времени.

Согласно этому определению, закон изменения координаты в зависимости от времени имеет вид:

где wt – величина под знаком косинуса или синуса; w – коэффициент, физический смысл которого раскроем ниже; А – амплитуда механических гармонических колебаний.

Уравнения (4.1) являются основными кинематическими уравнениями механических гармонических колебаний.

Рассмотрим следующий пример. Возьмем ось Ох (рис. 64). Из точки 0 проведем окружность с радиусом R = А. Пусть точка М из положения 1 начинает двигаться по окружности с постоянной скоростью v (или с постоянной угловой скоростью w , v = wА ). Через некоторое время t радиус повернется на угол ф: ф=wt .

При таком движении по окружности точки М ее проекция на ось х М х будет совершать движение вдоль оси х, координата которой х будет равна х = А • cos ф = = А • cos wt . Таким образом, если материальная точка движется по окружности радиусом А, центр которой совпадает с началом координат, то проекция этой точки на ось х (и на ось у) будет совершать гармонические механические колебания.

Если известна величина wt, которая стоит под знаком косинуса, и амплитуда А, то можно определить и х в уравнении (4.1).

Величину wt, стоящую под знаком косинуса (или синуса), однозначно определяющую координату колеблющейся точки при заданной амплитуде, называют фазой колебания . Для точки М, движущейся по окружности, величина w означает ее угловую скорость. Каков физический смысл величины w для точки М х , совершающей механические гармонические колебания? Координаты колеблющейся точки М х одинаковы в некоторый момент времени t и (Т +1) (из определения периода Т), т. е. A cos wt = A cos w (t + Т), а это значит, что w (t + Т) – wt = 2 ПИ (из свойства периодичности функции косинуса). Отсюда следует, что

Следовательно, для материальной точки, совершающей гармонические механические колебания, величину w можно интерпретировать как количество колебаний за определенный цикл времени, равный 2л . Поэтому величину w назвали циклической (или круговой) частотой .

Если точка М начинает свое движение не из точки 1 а из точки 2, то уравнение (4,1) примет вид:

Величину ф 0 называют начальной фазой .

Скорость точки М х найдем как производную от координаты по времени:

Ускорение точки, колеблющейся по гармоническому закону, определим как производную от скорости:

Из формулы (4.4) видно, что скорость точки, совершающей гармонические колебания, изменяется тоже по закону косинуса. Но скорость по фазе опережает координату на ПИ/2 . Ускорение при гармоническом колебании изменяется по закону косинуса, но опережает координату по фазе на п . Уравнение (4.5) можно записать через координату х:

Ускорение при гармонических колебаниях пропорционально смещению с противоположным знаком. Умножим правую и левую части уравнения (4.5) на массу колеблющей материальной точки т, получим соотношения:

Согласно второму закону Ньютона, физический смысл правой части выражения (4.6) есть проекция силы F x , которая обеспечивает гармоническое механическое движение:

Величина F x пропорциональна смещению х и направлена противоположно ему. Примером такой силы является сила упругости, величина которой пропорциональна деформации и противоположно ей направлена (закон Гука).

Закономерность зависимости ускорения от смещения, вытекающую из уравнения (4.6), рассмотренную нами для механических гармонических колебаний, можно обобщить и применить при рассмотрении колебаний другой физической природы (например, изменение тока в колебательном контуре, изменение заряда, напряжения, индукции магнитного поля и т. д.). Поэтому уравнение (4.8) называют основным уравнением динамики гармонических колебаний .

Рассмотрим движение пружинного и математического маятников.

Пусть к пружине (рис. 63), расположенной горизонтально и закрепленной в точке 0, одним концом прикреплено тело массой т, которое может перемещаться вдоль оси х без трения. Коэффициент жесткости пружины пусть будет равен k. Выведем тело m внешней силой из положения равновесия и отпустим. Тогда вдоль оси х на тело будет действовать только упругая сила, которая согласно закону Гука, будет равна: F yпp = -kx.

Уравнение движения этого тела будет иметь вид:

Сравнивая уравнения (4.6) и (4.9), делаем два вывода:

  1. Движение тела на пружине будет происходить по гармоническому закону, т. е. тело m будет совершать механические гармонические колебания;
  2. Сравнивая коэффициенты перед х уравнений (4.6) и (4.9), заключаем, что циклическая частота этих гармонических колебаний будет равна:

Из формул (4.2) и (4.10) выводим формулу для периода колебаний груза на пружине:

Математическим маятником называется тело массой т, подвешенное на длинной нерастяжимой нити пренебрежимо малой массы. В положении равновесия на это тело будут действовать сила тяжести и сила упругости нити. Эти силы будут уравновешивать друг друга.

Если нить отклонить на угол а от положения равновесия, то на тело действуют те же силы, но они уже не уравновешивают друг друга, и тело начинает двигаться по дуге под действием составляющей силы тяжести, направленной вдоль касательной к дуге и равной mg sin a .

Уравнение движения маятника принимает вид:

Знак минус в правой части означает, что сила F x = mg sin a направлена против смещения. Гармоническое колебание будет происходить при малых углах отклонения, т. е. при условии а 2* sin a .

Заменим sin а в уравнении (4.12), получим следующее уравнение:

Уравнение (4.13) показывает, что ускорение колебания маятника прямо пропорционально смещению и противоположно ему направлено. Следовательно, маятник будет совершать механические гармонические колебания с циклической частотой

и поэтому, согласно уравнению (4.2), период колебаний его будет равен:

Превращение энергии при гармонических механических колебаниях рассмотрим на примере пружинного маятника. В любой момент времени полная энергия колеблющегося груза (Е полн ) будет состоять из кинети-

Полная энергия при гармонических механических колебаниях пропорциональна квадрату амплитуды и квадрату циклической частоты.

На рис. 65 качественно изображены графики зависимостей потенциальной и кинетической энергии пружинного маятника от координаты х.

На рис. 66 представлены качественные графики зависимостей кинетической и потенциальной энергии от времени.

За начальный момент времени принято положение тела, максимально отклоненное от положения равновесия. Частота колебания потенциальной и кинетической энергии в два раза больше, чем частота колебания движущегося тела.


источники:

http://testschool.ru/2017/12/06/kontrolnaya-rabota-po-fizike-elektromagnitnyie-kolebaniya-i-volnyi-11-klass/

http://4systems.ru/inf/x-xmax-cos-wt-formula/